scholarly journals A Model of Directed Graph Cofiber

Axioms ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 32
Author(s):  
Zachary McGuirk ◽  
Byungdo Park

In the homotopy theory of spaces, the image of a continuous map is contractible to a point in its cofiber. This property does not apply when we discretize spaces and continuous maps to directed graphs and their morphisms. In this paper, we give a construction of a cofiber of a directed graph map whose image is contractible in the cofiber. Our work reveals that a category-theoretically correct construction in continuous setup is no longer correct when it is discretized and hence leads to look at canonical constructions in category theory in a different perspective.

2015 ◽  
Vol 24 (6) ◽  
pp. 873-928 ◽  
Author(s):  
ANDREW TREGLOWN

We say that a (di)graph G has a perfect H-packing if there exists a set of vertex-disjoint copies of H which cover all the vertices in G. The seminal Hajnal–Szemerédi theorem characterizes the minimum degree that ensures a graph G contains a perfect Kr-packing. In this paper we prove the following analogue for directed graphs: Suppose that T is a tournament on r vertices and G is a digraph of sufficiently large order n where r divides n. If G has minimum in- and outdegree at least (1−1/r)n then G contains a perfect T-packing.In the case when T is a cyclic triangle, this result verifies a recent conjecture of Czygrinow, Kierstead and Molla [4] (for large digraphs). Furthermore, in the case when T is transitive we conjecture that it suffices for every vertex in G to have sufficiently large indegree or outdegree. We prove this conjecture for transitive triangles and asymptotically for all r ⩾ 3. Our approach makes use of a result of Keevash and Mycroft [10] concerning almost perfect matchings in hypergraphs as well as the Directed Graph Removal Lemma [1, 6].


Author(s):  
Gábor Kusper ◽  
Csaba Biró

In a previous paper we defined the Black-and-White SAT problem which has exactly two solutions, where each variable is either true or false. We showed that Black-and-White $2$-SAT problems represent strongly connected directed graphs. We presented also the strong model of communication graphs. In this work we introduce two new models, the weak model, and the Balatonbogl\'{a}r model of communication graphs. A communication graph is a directed graph, where no self loops are allowed. In this work we show that the weak model of a strongly connected communication graph is a Black-and-White SAT problem. We prove a powerful theorem, the so called Transitions Theorem. This theorem states that for any model which is between the strong and the weak model, we have that this model represents strongly connected communication graphs as Blask-and-White SAT problems. We show that the Balatonbogl\'{a}r model is between the strong and the weak model, and it generates $3$-SAT problems, so the Balatonbogl\'{a}r model represents strongly connected communication graphs as Black-and-White $3$-SAT problems. Our motivation to study these models is the following: The strong model generates a $2$-SAT problem from the input directed graph, so it does not give us a deep insight how to convert a general SAT problem into a directed graph. The weak model generates huge models, because it represents all cycles, even non-simple cycles, of the input directed graph. We need something between them to gain more experience. From the Balatonbogl\'{a}r model we learned that it is enough to have a subset of a clause, which represents a cycle in the weak model, to make the Balatonbogl\'{a}r model more compact. We still do not know how to represent a SAT problem as a directed graph, but this work gives a strong link between two prominent fields of formal methods: SAT problem and directed graphs.


Author(s):  
Matt Baxter ◽  
Simon Polovina ◽  
Wim Laurier ◽  
Mark von Rosing

AbstractEnterprise Architecture (EA) metamodels align an organisation’s business, information and technology resources so that these assets best meet the organisation’s purpose. The Layered EA Development (LEAD) Ontology enhances EA practices by a metamodel with layered metaobjects as its building blocks interconnected by semantic relations. Each metaobject connects to another metaobject by two semantic relations in opposing directions, thus highlighting how each metaobject views other metaobjects from its perspective. While the resulting two directed graphs reveal all the multiple pathways in the metamodel, more desirable would be to have one directed graph that focusses on the dependencies in the pathways. Towards this aim, using CG-FCA (where CG refers to Conceptual Graph and FCA to Formal Concept Analysis) and a LEAD case study, we determine an algorithm that elicits the active as opposed to the passive semantic relations between the metaobjects resulting in one directed graph metamodel. We also identified the general applicability of our algorithm to any metamodel that consists of triples of objects with active and passive relations.


Algorithmica ◽  
2021 ◽  
Author(s):  
Fedor V. Fomin ◽  
Petr A. Golovach ◽  
William Lochet ◽  
Pranabendu Misra ◽  
Saket Saurabh ◽  
...  

AbstractWe initiate the parameterized complexity study of minimum t-spanner problems on directed graphs. For a positive integer t, a multiplicative t-spanner of a (directed) graph G is a spanning subgraph H such that the distance between any two vertices in H is at most t times the distance between these vertices in G, that is, H keeps the distances in G up to the distortion (or stretch) factor t. An additive t-spanner is defined as a spanning subgraph that keeps the distances up to the additive distortion parameter t, that is, the distances in H and G differ by at most t. The task of Directed Multiplicative Spanner is, given a directed graph G with m arcs and positive integers t and k, decide whether G has a multiplicative t-spanner with at most $$m-k$$ m - k arcs. Similarly, Directed Additive Spanner asks whether G has an additive t-spanner with at most $$m-k$$ m - k arcs. We show that (i) Directed Multiplicative Spanner admits a polynomial kernel of size $$\mathcal {O}(k^4t^5)$$ O ( k 4 t 5 ) and can be solved in randomized $$(4t)^k\cdot n^{\mathcal {O}(1)}$$ ( 4 t ) k · n O ( 1 ) time, (ii) the weighted variant of Directed Multiplicative Spanner can be solved in $$k^{2k}\cdot n^{\mathcal {O}(1)}$$ k 2 k · n O ( 1 ) time on directed acyclic graphs, (iii) Directed Additive Spanner is $${{\,\mathrm{\mathsf{W}}\,}}[1]$$ W [ 1 ] -hard when parameterized by k for every fixed $$t\ge 1$$ t ≥ 1 even when the input graphs are restricted to be directed acyclic graphs. The latter claim contrasts with the recent result of Kobayashi from STACS 2020 that the problem for undirected graphs is $${{\,\mathrm{\mathsf{FPT}}\,}}$$ FPT when parameterized by t and k.


Author(s):  
Iftichar Mudhar Talb Al-Shraa

Let g be a continuous map from 8 to itself has a fixed point at (0,0), we prove that g has a twist periodic orbit if there is a rational rotation number.


10.37236/3610 ◽  
2015 ◽  
Vol 22 (4) ◽  
Author(s):  
Louis DeBiasio ◽  
Theodore Molla

In 1960 Ghouila-Houri extended Dirac's theorem to directed graphs by proving that if $D$ is a directed graph on $n$ vertices with minimum out-degree and in-degree at least $n/2$, then $D$ contains a directed Hamiltonian cycle. For directed graphs one may ask for other orientations of a Hamiltonian cycle and in 1980 Grant initiated the problem of determining minimum degree conditions for a directed graph $D$ to contain an anti-directed Hamiltonian cycle (an orientation in which consecutive edges alternate direction). We prove that for sufficiently large even $n$, if $D$ is a directed graph on $n$ vertices with minimum out-degree and in-degree at least $\frac{n}{2}+1$, then $D$ contains an anti-directed Hamiltonian cycle. In fact, we prove the stronger result that $\frac{n}{2}$ is sufficient unless $D$ is one of two counterexamples. This result is sharp.


2018 ◽  
Vol 6 (1) ◽  
pp. 26-33
Author(s):  
Olena Karlova ◽  
Volodymyr Mykhaylyuk

Abstract We prove that if X is a paracompact connected space and Z = ∏s∈S Zs is a product of a family of equiconnected metrizable spaces endowed with the box topology, then for every Baire-one map g : X → Z there exists a separately continuous map f : X2 → Z such that f (x, x) = g(x) for all x ∈ X.


1986 ◽  
Vol 38 (6) ◽  
pp. 1281-1298 ◽  
Author(s):  
S. Iliadis ◽  
V. Tzannes

This paper is concerned with topological spaces whose continuous maps into a given space R are constant, as well as with spaces having this property locally. We call these spaces R-monolithic and locally R-monolithic, respectively.Spaces with such properties have been considered in [1], [5]-[7], [10], [11], [22], [28], [31], where with the exception of [10], the given space R is the set of real-numbers with the usual topology. Obviously, for a countable space, connectedness is equivalent to the property that every continuous real-valued map is constant. Countable connected (locally connected) spaces have been constructed in papers [2]-[4], [8], [9], [11]-[21], [23]-[26], [30].


1995 ◽  
Vol 05 (05) ◽  
pp. 1433-1435
Author(s):  
F. BALIBREA ◽  
J. SMÍTAL

We give a characterization of the set of nonwandering points of a continuous map f of the interval with zero topological entropy, attracted to a single (infinite) minimal set Q. We show that such a map f can have a unique infinite minimal set Q and an infinite set B ⊂ Ω (f)\ ω (f) (of nonwandering points that are not ω-limit points) attracted to Q and such that B has infinite intersections with infinitely many disjoint orbits of f.


Sign in / Sign up

Export Citation Format

Share Document