scholarly journals The Emerging Electric Vehicle and Battery Industry in Indonesia: Actions around the Nickel Ore Export Ban and a SWOT Analysis

Batteries ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 80
Author(s):  
Andante Hadi Pandyaswargo ◽  
Alan Dwi Wibowo ◽  
Meilinda Fitriani Nur Maghfiroh ◽  
Arlavinda Rezqita ◽  
Hiroshi Onoda

As the automotive industry shifts from internal combustion engine (ICE) vehicles to electric vehicles (EVs), many countries are setting new strategies in their transportation sector. The Li-ion battery is currently the most common battery used in EVs due to its high energy density, durability, safety, and cost competitiveness. Nickel is predicted to be an essential component for the lithium nickel cobalt manganese oxide (NMC) as a cathode material of choice for EV applications. Indonesia, one of the world’s largest nickel ore suppliers, put an export ban on nickel ore effective from 2020. The bold movement was intended to initiate the domestic EV industry and encourage investors abroad to drive their manufacturing activities into the country. On the other hand, the global Li-ion battery manufacturers who imported nickel from Indonesia had to restrategize their businesses. This review discussed the chronological events leading to the ban and after the ban from the media, government regulations, and literature reviews. The authors of this study also conducted interviews and attended seminars with the national experts and key players in the battery and EV industry to gain their most pertinent insights. The SWOT analysis of the reviewed materials indicated that while the Indonesian battery industry is still new, it needs to diversify its research and development activities and collaborate internationally to optimize the utilization of its resources and meet the purchasing power of the domestic EV market. Finally, this study summarized six key factors to support Indonesia’s ambition to be a new regional hub for EVs. These factors are: (1) pricing, (2) technology, (3) policy, (4) investment, (5) infrastructure, and (6) compliance with sustainability standards.

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1074 ◽  
Author(s):  
Yu Miao ◽  
Patrick Hynan ◽  
Annette von Jouanne ◽  
Alexandre Yokochi

Over the past several decades, the number of electric vehicles (EVs) has continued to increase. Projections estimate that worldwide, more than 125 million EVs will be on the road by 2030. At the heart of these advanced vehicles is the lithium-ion (Li-ion) battery which provides the required energy storage. This paper presents and compares key components of Li-ion batteries and describes associated battery management systems, as well as approaches to improve the overall battery efficiency, capacity, and lifespan. Material and thermal characteristics are identified as critical to battery performance. The positive and negative electrode materials, electrolytes and the physical implementation of Li-ion batteries are discussed. In addition, current research on novel high energy density batteries is presented, as well as opportunities to repurpose and recycle the batteries.


Author(s):  
Zhiqiang Li ◽  
Xiaowei Fan ◽  
Fang Wang ◽  
Dasi He ◽  
Shifei Wei

This paper focuses on the cooling solution to a high energy density and large capacity Li-ion battery system which consist of four packs of 26650 cells. The cooling measure is a critical technology for many Li-ion battery systems especially that designed for hybrid electric vehicles, in which, high energy density within a limited space is very common in these systems. Both the safety and efficiency of Li-ion battery cells rely on the temperature which is under control of the battery thermal management system. In this study, temperature fields within battery boxes are simulated with the computational fluid dynamic (CFD) method. With the help of an airconditioner, a cooling solution is proposed for a relatively large dimensional, high energy density Li-ion battery cells array using by vehicles. Through the proposed solution, the maximum single-cell temperature is restricted to a reasonable level, and the maximum temperature difference throughout the battery system is also improved.


2021 ◽  
Vol 30 (4) ◽  
pp. 28-29
Author(s):  
Krishnakanth Sada

The transition from fossil fuels to carbon-free forms of renewable energy has become a spotlight with the revolutionary emergence of efficient electrochemical energy storage systems. It enables us to realize electric mobility empowered by Li-ion battery technology. Nevertheless, for the past three decades, the development of battery technology has been very sluggish, and it warrants new strategies to meet the growing demand for high energy density. In this spirit, we are working to develop versatile battery cathodes, which can be used for electrochemical and electrocatalytic applications.


Author(s):  
Nalin A. Chaturvedi ◽  
Jake F. Christensen ◽  
Reinhardt Klein ◽  
Aleksandar Kojic

Li-ion based batteries are believed to be the most promising battery system for HEV/PHEV/EV applications due to their high energy density, lack of hysteresis and low self-discharge currents. However, designing a battery, along with its Battery Management System (BMS), that can guarantee safe and reliable operation, is a challenge since aging and other mechanisms involving optimal charge and discharge of the battery are not sufficiently well understood. In a previous article [1], we presented a model that has been studied in [2]–[5] to understand the operation of a Li-ion battery. In this article, we continue our work and present an approximation technique that can be applied to a generic battery model. These approximation method is based on projecting solutions to a Hilbert subspace formed by taking the span of an countably infinite set of basis functions. In this article, we apply this method to the key diffusion equation in the battery model, thus providing a fast approximation for the single particle model (SPM) for both variable and constant diffusion case.


2017 ◽  
Vol 164 (7) ◽  
pp. A1552-A1558 ◽  
Author(s):  
Xiaoya Wang ◽  
Yiqing Huang ◽  
Dongsheng Ji ◽  
Fredrick Omenya ◽  
Khim Karki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document