scholarly journals Authentication and Traceability Study on Barbera d’Asti and Nizza DOCG Wines: The Role of Trace- and Ultra-Trace Elements

Beverages ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 63
Author(s):  
Maurizio Aceto ◽  
Federica Gulino ◽  
Elisa Calà ◽  
Elisa Robotti ◽  
Maurizio Petrozziello ◽  
...  

Barbera d’Asti—including Barbera d’Asti superiore—and Nizza are two DOCG (Denominazione di Origine Controllata e Garantita) wines produced in Piemonte (Italy) from the Barbera grape variety. Differences among them arise in the production specifications in terms of purity, ageing, and zone of production, in particular with concern to Nizza, which follows the most stringent rules, sells at three times the average price, and is considered to have the highest market value. To guarantee producers and consumers, authentication methods must be developed in order to distinguish among the different wines. As the production zones totally overlap, it is important to verify whether the distinction is possible or not according to metals content, or whether chemical markers more linked to winemaking are needed. In this work, Inductively Coupled Plasma (ICP) elemental analysis and multivariate data analysis are used to study the authentication and traceability of samples from the three designations of 2015 vintage. The results show that, as far as elemental distribution in wine is concerned, work in the cellar, rather than geographic provenance, is crucial for the possibility of distinction.

Author(s):  
Maurizio Aceto ◽  
Federica Gulino ◽  
Elisa Calà ◽  
Elisa Robotti ◽  
Maurizio Petrozziello ◽  
...  

Barbera d'Asti - including Barbera d'Asti superiore - and Nizza are two DOCG (Denominazione di Origine Controllata e Garantita) wines produced in Piemonte (Italy) from Barbera grape variety. Differences among them arise in the production specifications in terms of purity, ageing and zone of production, in particular with concern to Nizza, which has more stringent rules and can therefore be considered as the one with the highest market value, with even three-fold more average prices. To guarantee producers and consumers, authentication methods must be developed in order to distinguish among the different wines. As the production zones totally overlap, it is important to verify whether the distinction is possible or not according to metals content, or whether chemical markers more linked to winemaking are needed. In this work, Inductively Coupled Plasma (ICP) elemental analysis and multivariate data analysis are used to study the authentication and traceability of samples from the three designations of 2015 vintage. The results show that, as far as elemental distribution in wine is concerned, work in the cellar, rather than geographic provenance, is crucial for the possibility of distinction.


2020 ◽  
Vol 16 ◽  
Author(s):  
Wenshan Ni ◽  
Xiangju Mao ◽  
Hongli Zhang ◽  
Lu Liu ◽  
Xiaorui Guo ◽  
...  

Background: Platinum (Pt), palladium (Pd), rhodium (Rh) and iridium (Ir) are platinum group elements (PGEs) and also important elements of geochemistry and environmental chemistry with the similar physic-chemical properties, which have been widely used in industry and laboratory. However, due to the low abundance and inhomogeneous distribution in natural ore as well as the nugget effect, the accurate determination of PGEs has been a challenge to analytical chemistry. Methods: In this work, a novel fire assay method was reported for the determination of ultra-trace Pt, Pd, Rh and Ir in geochemical samples. Tin powder (Sn) instead of stannic oxide (SnO2) was used as fire assay collector to reduce the melting temperature from 1250 oC to 1050 oC, the escape of molten material caused by high temperature was successfully avoided. Tin bead was compressed into thin slice and dissolved by HCl. For the target Pt, Pd, Rh and Ir, HCl insoluble substance such as PtSn4, PdSn4, RhSn4 and Ir3Sn7 were formed and separated from matrix by filtering. The metal compounds precipitate together with filter paper were microwave-assisted completely digested by aqua regia (50%, v/v), thence the sample solution were determined by inductively coupled plasma mass spectrometry (ICP-MS). Results: Compared with nickel oxide and lead oxide in nickel sulfide /lead fire assay, the reagent blank of tin powder were relatively low and could be directly employed in tin fire assay to collect Pt, Pd, Rh and Ir without purifying. Moreover, the harm of nickel oxide and lead oxide to the analyst and environment was avoided by using the non-toxic tin powder. The decomposition method of chromite and black shale were investigated as well as the amount of tin powder and flour, microwave digestion program for the determination of Pt, Pd, Rh and Ir were optimized. Besides, the influence of mass spectrum interference of co-existing elements was discussed and the standard mode and kinetic energy discrimination collision pool mode were compared. Under the optimal conditions, excellent curve fitting of Pt, Pd, Rh and Ir were obtained between 0.01~100 ng mL-1 , with the correlation coefficients exceeding 0.9996. The detection limits were from 0.003 ng g -1 to 0.057 ng g -1 . Conclusion: The developed method was applied to analyze the Chinese Certified Reference Materials and the determined values were in good agreement with the certified values.


1979 ◽  
Vol 33 (4) ◽  
pp. 399-404 ◽  
Author(s):  
R. C. Fry ◽  
M. B. Denton ◽  
D. L. Windsor ◽  
S. J. Northway

Studies are presented describing an improved application of the NaBH4 reduction of soluble arsenite to form arsine as a preconcentration approach for ultra-trace level arsenic determination by inductively coupled plasma optical emission spectrometry. Specialized analyte introduction techniques are described for elimination of reaction by-products that would normally extinguish a medium power plasma discharge. An approach is presented to minimize the need for background correction and facilitate a superior arsenic detection limit (≤0.03 ng/ml) in a relatively inexpensive 1.2 kW inductively coupled plasma system.


Sign in / Sign up

Export Citation Format

Share Document