scholarly journals Recent Advancements in 3D Printing and Bioprinting Methods for Cardiovascular Tissue Engineering

2021 ◽  
Vol 8 (10) ◽  
pp. 133
Author(s):  
Foteini K. Kozaniti ◽  
Despoina Nektaria Metsiou ◽  
Aikaterini E. Manara ◽  
George Athanassiou ◽  
Despina D. Deligianni

Recent decades have seen a plethora of regenerating new tissues in order to treat a multitude of cardiovascular diseases. Autografts, xenografts and bioengineered extracellular matrices have been employed in this endeavor. However, current limitations of xenografts and exogenous scaffolds to acquire sustainable cell viability, anti-inflammatory and non-cytotoxic effects with anti-thrombogenic properties underline the requirement for alternative bioengineered scaffolds. Herein, we sought to encompass the methods of biofabricated scaffolds via 3D printing and bioprinting, the biomaterials and bioinks recruited to create biomimicked tissues of cardiac valves and vascular networks. Experimental and computational designing approaches have also been included. Moreover, the in vivo applications of the latest studies on the treatment of cardiovascular diseases have been compiled and rigorously discussed.

2015 ◽  
Vol 21 (5) ◽  
pp. 509-517 ◽  
Author(s):  
Ritika R. Chaturvedi ◽  
Kelly R. Stevens ◽  
Ricardo D. Solorzano ◽  
Robert E. Schwartz ◽  
Jeroen Eyckmans ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2891
Author(s):  
Pilar Simmons ◽  
Taylor McElroy ◽  
Antiño R. Allen

Artificial extracellular matrices (aECMs) are an extension of biomaterials that were developed as in-vitro model environments for tissue cells that mimic the native in vivo target tissues’ structure. This bibliometric analysis evaluated the research productivity regarding aECM based on tissue engineering technology. The Web of Science citation index was examined for articles published from 1990 through 2019 using three distinct aECM-related topic sets. Data were also visualized using network analyses (VOSviewer). Terms related to in-vitro, scaffolds, collagen, hydrogels, and differentiation were reoccurring in the aECM-related literature over time. Publications with terms related to a clinical direction (wound healing, stem cells, artificial skin, in-vivo, and bone regeneration) have steadily increased, as have the number of countries and institutions involved in the artificial extracellular matrix. As progress with 3D scaffolds continues to advance, it will become the most promising technology to provide a therapeutic option to repair or replace damaged tissue.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohan Prasath Mani ◽  
Madeeha Sadia ◽  
Saravana Kumar Jaganathan ◽  
Ahmad Zahran Khudzari ◽  
Eko Supriyanto ◽  
...  

Abstract In tissue engineering, 3D printing is an important tool that uses biocompatible materials, cells, and supporting components to fabricate complex 3D printed constructs. This review focuses on the cytocompatibility characteristics of 3D printed constructs, made from different synthetic and natural materials. From the overview of this article, inkjet and extrusion-based 3D printing are widely used methods for fabricating 3D printed scaffolds for tissue engineering. This review highlights that scaffold prepared by both inkjet and extrusion-based 3D printing techniques showed significant impact on cell adherence, proliferation, and differentiation as evidenced by in vitro and in vivo studies. 3D printed constructs with growth factors (FGF-2, TGF-β1, or FGF-2/TGF-β1) enhance extracellular matrix (ECM), collagen I content, and high glycosaminoglycan (GAG) content for cell growth and bone formation. Similarly, the utilization of 3D printing in other tissue engineering applications cannot be belittled. In conclusion, it would be interesting to combine different 3D printing techniques to fabricate future 3D printed constructs for several tissue engineering applications.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2114-2114 ◽  
Author(s):  
Haiming Chen ◽  
Eric Sanchez ◽  
Mingjie Li ◽  
Cathy Wang ◽  
Abby Gillespie ◽  
...  

Abstract Introduction: The JAK2 inhibitor ruxolitinib (RUX) is an inhibitor of the Janus kinase family of protein tyrosine kinases (JAKs) that is effective for the treatment of myeloproliferative diseases. Immunomodulatory drugs (IMiDs) including lenalidomide (LEN) and corticosteroids have shown efficacy for the treatment of multiple myeloma (MM). The JAK-STAT signaling pathway plays key roles in the growth and survival of malignant plasma cells in MM. In this study, we evaluated the preclinical anti-MM effects of RUX in combination with LEN and corticosteroids, both in vitro and in vivo, and in a patient with MM and polycythemia rubra vera (PRV). Methods: The human MM cell lines U266, RPMI8226 and MM1S cells were derived from ATCC. Primary MM tumor cells were isolated from MM patients’ bone marrow aspirates. The cells were seeded at105 cells/100ul/well in 96-well plates and incubated for 24 h in the presence of vehicle, RUX, LEN or dexamethasone (DEX) alone, RUX + LEN, RUX + DEX, or all three drugs together for 48 h. Cell viability was quantified using the MTS cell proliferation assay. In vitro, synergy between ruxolitinib and lenalidomide or dexamethasone was assessed using the median effect method of Chou and Talalay. For the in vivo studies, the human myeloma tumors (LAGκ-1A or LAGκ-2) were surgically implanted into the left superficial gluteal muscle of anaesthetized naive SCID mice. Mice were blindly assigned to one of the experimental groups, and treatment was initiated 7–21 d after tumor implantation. LEN was administered via oral gavage daily (30 mg/kg). RUX (3 mg/kg) was given via intraperitoneal (IP) injection twice daily. Dexamethasone was administered daily (1.5mg/kg) via IP injection. An 88 year old MM patient with PRV who developed MM on RUX alone and then progressed on LEN+DEX was treated with the combination of all three drugs. Results: In vitro, RUX induced concentration-dependent inhibition of viability in all three MM cell lines (U266, RPMI8226 and MM1S) at RUX 50 mM and inhibition of primary MM tumor cells at a higher concentration (100 mM). In contrast, RUX had negligible cytotoxic effects on normal peripheral blood mononuclear cells (PBMCs). We next examined cell viability in the presence of RUX plus LEN or DEX. First, U266 cells were incubated with a fixed concentration of LEN (30 mM) or DEX (40 mM) with increasing concentrations of RUX (0.1–100 mM) for 48 h. At RUX 50 mM, the cytotoxic effects of LEN were enhanced and at RUX 1 mM, the anti-myeloma effect of DEX was increased. Moreover, the cytotoxic effects of RUX, LEN and DEX were greater than RUX in combination with either LEN or DEX in U266 cells. Similar results were obtained using the RPMI8226 and MM1S cell lines as well as primary MM tumor cells. Next, we evaluated RUX in combination with lenalidomide and dexamethasone in vivo using SCID mice bearing either the human LAGκ-1A or LAGκ-2 MM xenografts. RUX (3mg/kg), LEN (15mg/kg) or DEX (1mg/kg) alone did not inhibit tumor growth in either mice bearing LAGκ-1A or LAGκ-2. In contrast, the combination of RUX with DEX but not LEN slightly decreased tumor volume. However, the combination of all three drugs at the same doses showed a marked reduction of tumor size and delay of tumor growth in both human MM xenograft models. In addition, a patient with MM and PRV experienced sustained and ongoing reductions in his serum M-protein, IgG, and 24-urine M-protein with achievement of a partial response on low doses of RUX (2.5 mg twice daily), LEN (2.5 mg daily), and methylprednisolone (20 mg daily) that has been ongoing for more than 12 months after developing MM on RUX alone and then progressing on the combination of LEN and methylprednisolone. Conclusion: This study illustrates that the combination of the JAK2 inhibitor RUX, LEN and corticosteroids shows both preclinical and promising clinical results for the treatment of MM. Disclosures No relevant conflicts of interest to declare.


2014 ◽  
Vol 15 (3-4) ◽  
Author(s):  
Lothar Koch ◽  
Andrea Deiwick ◽  
Boris Chichkov

AbstractCurrently, different 3D printing techniques are investigated for printing biomaterials and living cells. An ambitious aim is the printing of fully functional tissue or organs. Furthermore, for manifold applications in biomedical research and in testing of pharmaceuticals or cosmetics, printed tissue could be a new method, partly substituting test animals. Here we describe a laser-based printing technique applied for the arrangement of vital cells in two and three-dimensional patterns and for tissue engineering. First printed tissue, tested in vitro and in vivo, and printing of cell patterns for investigating cell-cell interactions are presented.


2020 ◽  
Author(s):  
S. Prakash Parthiban ◽  
Avathamsa Athirasala ◽  
Anthony Tahayeri ◽  
Reyan Abdelmoniem ◽  
Anne George ◽  
...  

AbstractIt has long been proposed that recapitulating the extracellular matrix (ECM) of native human tissues in the laboratory may enhance the regenerative capacity of engineered scaffolds in-vivo. Organ- and tissue-derived decellularized ECM biomaterials have been widely used for tissue repair, especially due to their intrinsic biochemical cues that can facilitate repair and regeneration. The main purpose of this study was to synthesize a new photocrosslinkable human bone-derived ECM hydrogel for bioprinting of vascularized scaffolds. To that end, we demineralized and decellularized human bone fragments to obtain a bone matrix, which was further processed and functionalized with methacrylate groups to form a photocrosslinkable methacrylate bone ECM hydrogel – BoneMA. The mechanical properties of BoneMA were tunable, with the elastic modulus increasing as a function of photocrosslinking time, while still retaining the nanoscale features of the polymer networks. The intrinsic cell-compatibility of the bone matrix ensured the synthesis of a highly cytocompatible hydrogel. The bioprinted BoneMA scaffolds supported vascularization of endothelial cells and within a day led to the formation of interconnected vascular networks. We propose that such a quick vascular network formation was due to the host of pro-angiogenic biomolecules present in the bone ECM matrix. Further, we also demonstrate the bioprintability of BoneMA in microdimensions as injectable ECM-based building blocks for microscale tissue engineering in a minimally invasive manner. We conclude that BoneMA may be a useful hydrogel system for tissue engineering and regenerative medicine.


2015 ◽  
Vol 10 (3) ◽  
pp. 034002 ◽  
Author(s):  
Bobak Mosadegh ◽  
Guanglei Xiong ◽  
Simon Dunham ◽  
James K Min

Physiology ◽  
2016 ◽  
Vol 31 (1) ◽  
pp. 7-15 ◽  
Author(s):  
Cameron Best ◽  
Ekene Onwuka ◽  
Victoria Pepper ◽  
Malik Sams ◽  
Jake Breuer ◽  
...  

Advancements in biomaterial science and available cell sources have spurred the translation of tissue-engineering technology to the bedside, addressing the pressing clinical demands for replacement cardiovascular tissues. Here, the in vivo status of tissue-engineered blood vessels, heart valves, and myocardium is briefly reviewed, illustrating progress toward a tissue-engineered heart for clinical use.


Sign in / Sign up

Export Citation Format

Share Document