cardiovascular tissue engineering
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 26)

H-INDEX

32
(FIVE YEARS 5)

2021 ◽  
Vol 16 (12) ◽  
pp. 1037-1050
Author(s):  
Tahmineh Kazemi ◽  
Ahmad A Mohammadpour ◽  
Maryam M Matin ◽  
Nasser Mahdavi-Shahri ◽  
Hesam Dehghani ◽  
...  

Aim: To evaluate the suitability of using aorta elastin scaffold, in combination with human adipose-derived mesenchymal stem cells (hAd-MSCs), as an approach for cardiovascular tissue engineering. Materials & Methods: Human adipose-derived MSCs were seeded on elastin samples of decellularized bovine aorta. The samples were cultured in vitro to investigate the inductive effects of this scaffold on the cells. The results were evaluated using histological, and immunohistochemical methods, as well as MTT assay, DNA content, reverse transcription-PCR and scanning electron microscopy. Results: Histological staining and DNA content confirmed the efficacy of decellularization procedure (82% DNA removal). MTT assay showed the construct’s ability to support cell viability and proliferation. Cell differentiation was confirmed by reverse transcription-PCR and positive immunohistochemistry for alfa smooth muscle actin and von Willebrand. Conclusion: The prepared aortic elastin samples act as a potential scaffold, in combination with MSCs, for applications in cardiovascular tissue engineering. Further experiments in animal models are required to confirm this.


2021 ◽  
Vol 8 (11) ◽  
pp. 137
Author(s):  
Astha Khanna ◽  
Maedeh Zamani ◽  
Ngan F. Huang

Regenerative medicine and tissue engineering strategies have made remarkable progress in remodeling, replacing, and regenerating damaged cardiovascular tissues. The design of three-dimensional (3D) scaffolds with appropriate biochemical and mechanical characteristics is critical for engineering tissue-engineered replacements. The extracellular matrix (ECM) is a dynamic scaffolding structure characterized by tissue-specific biochemical, biophysical, and mechanical properties that modulates cellular behavior and activates highly regulated signaling pathways. In light of technological advancements, biomaterial-based scaffolds have been developed that better mimic physiological ECM properties, provide signaling cues that modulate cellular behavior, and form functional tissues and organs. In this review, we summarize the in vitro, pre-clinical, and clinical research models that have been employed in the design of ECM-based biomaterials for cardiovascular regenerative medicine. We highlight the research advancements in the incorporation of ECM components into biomaterial-based scaffolds, the engineering of increasingly complex structures using biofabrication and spatial patterning techniques, the regulation of ECMs on vascular differentiation and function, and the translation of ECM-based scaffolds for vascular graft applications. Finally, we discuss the challenges, future perspectives, and directions in the design of next-generation ECM-based biomaterials for cardiovascular tissue engineering and clinical translation.


Author(s):  
Cansu Karakaya ◽  
Jordy G. M. van Asten ◽  
Tommaso Ristori ◽  
Cecilia M. Sahlgren ◽  
Sandra Loerakker

AbstractCardiovascular tissue engineering (CVTE) aims to create living tissues, with the ability to grow and remodel, as replacements for diseased blood vessels and heart valves. Despite promising results, the (long-term) functionality of these engineered tissues still needs improvement to reach broad clinical application. The functionality of native tissues is ensured by their specific mechanical properties directly arising from tissue organization. We therefore hypothesize that establishing a native-like tissue organization is vital to overcome the limitations of current CVTE approaches. To achieve this aim, a better understanding of the growth and remodeling (G&R) mechanisms of cardiovascular tissues is necessary. Cells are the main mediators of tissue G&R, and their behavior is strongly influenced by both mechanical stimuli and cell–cell signaling. An increasing number of signaling pathways has also been identified as mechanosensitive. As such, they may have a key underlying role in regulating the G&R of tissues in response to mechanical stimuli. A more detailed understanding of mechano-regulated cell–cell signaling may thus be crucial to advance CVTE, as it could inspire new methods to control tissue G&R and improve the organization and functionality of engineered tissues, thereby accelerating clinical translation. In this review, we discuss the organization and biomechanics of native cardiovascular tissues; recent CVTE studies emphasizing the obtained engineered tissue organization; and the interplay between mechanical stimuli, cell behavior, and cell–cell signaling. In addition, we review past contributions of computational models in understanding and predicting mechano-regulated tissue G&R and cell–cell signaling to highlight their potential role in future CVTE strategies.


Author(s):  
Eric K. N. Gähwiler ◽  
Sarah E. Motta ◽  
Marcy Martin ◽  
Bramasta Nugraha ◽  
Simon P. Hoerstrup ◽  
...  

Induced pluripotent stem cells (iPSCs) originate from the reprogramming of adult somatic cells using four Yamanaka transcription factors. Since their discovery, the stem cell (SC) field achieved significant milestones and opened several gateways in the area of disease modeling, drug discovery, and regenerative medicine. In parallel, the emergence of clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) revolutionized the field of genome engineering, allowing the generation of genetically modified cell lines and achieving a precise genome recombination or random insertions/deletions, usefully translated for wider applications. Cardiovascular diseases represent a constantly increasing societal concern, with limited understanding of the underlying cellular and molecular mechanisms. The ability of iPSCs to differentiate into multiple cell types combined with CRISPR-Cas9 technology could enable the systematic investigation of pathophysiological mechanisms or drug screening for potential therapeutics. Furthermore, these technologies can provide a cellular platform for cardiovascular tissue engineering (TE) approaches by modulating the expression or inhibition of targeted proteins, thereby creating the possibility to engineer new cell lines and/or fine-tune biomimetic scaffolds. This review will focus on the application of iPSCs, CRISPR-Cas9, and a combination thereof to the field of cardiovascular TE. In particular, the clinical translatability of such technologies will be discussed ranging from disease modeling to drug screening and TE applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kevin M. Blum ◽  
Lauren C. Roby ◽  
Jacob C. Zbinden ◽  
Yu-Chun Chang ◽  
Gabriel J. M. Mirhaidari ◽  
...  

AbstractTissue engineered vascular grafts hold promise for the creation of functional blood vessels from biodegradable scaffolds. Because the precise mechanisms regulating this process are still under investigation, inducible genetic mouse models are an important and widely used research tool. However, here we describe the importance of challenging the baseline assumption that tamoxifen is inert when used as a small molecule inducer in the context of cardiovascular tissue engineering. Employing a standard inferior vena cava vascular interposition graft model in C57BL/6 mice, we discovered differences in the immunologic response between control and tamoxifen-treated animals, including occlusion rate, macrophage infiltration and phenotype, the extent of foreign body giant cell development, and collagen deposition. Further, differences were noted between untreated males and females. Our findings demonstrate that the host-response to materials commonly used in cardiovascular tissue engineering is sex-specific and critically impacted by exposure to tamoxifen, necessitating careful model selection and interpretation of results.


2021 ◽  
Vol 17 ◽  
pp. 100263
Author(s):  
Elga Morrison ◽  
Sanika Suvarnapathaki ◽  
Loren Blake ◽  
Gulden Camci-Unal

Sign in / Sign up

Export Citation Format

Share Document