scholarly journals Male Differentiation in the Marine Copepod Oithona nana Reveals the Development of a New Nervous Ganglion and Lin12-Notch-Repeat Protein-Associated Proteolysis

Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 657
Author(s):  
Kevin Sugier ◽  
Romuald Laso-Jadart ◽  
Benoît Vacherie ◽  
Jos Käfer ◽  
Laurie Bertrand ◽  
...  

Copepods are among the most numerous animals, and they play an essential role in the marine trophic web and biogeochemical cycles. The genus Oithona is described as having the highest density of copepods. The Oithona male paradox describes the activity states of males, which are obliged to alternate between immobile and mobile phases for ambush feeding and mate searching, respectively, while the female is less mobile and feeds less. To characterize the molecular basis of this sexual dimorphism, we combined immunofluorescence, genomics, transcriptomics, and protein–protein interaction approaches and revealed the presence of a male-specific nervous ganglion. Transcriptomic analysis showed male-specific enrichment for nervous system development-related transcripts. Twenty-seven Lin12-Notch Repeat domain-containing protein coding genes (LDPGs) of the 75 LDPGs identified in the genome were specifically expressed in males. Furthermore, some LDPGs coded for proteins with predicted proteolytic activity, and proteases-associated transcripts showed a male-specific enrichment. Using yeast double–hybrid assays, we constructed a protein–protein interaction network involving two LDPs with proteases, extracellular matrix proteins, and neurogenesis-related proteins. We also hypothesized possible roles of the LDPGs in the development of the lateral ganglia through helping in extracellular matrix lysis, neurites growth guidance, and synapses genesis.

2021 ◽  
Author(s):  
Kevin Sugier ◽  
Romuald Laso-Jadart ◽  
Benoit Vacherie ◽  
Jos Kafer ◽  
Laurie Bertrand ◽  
...  

Background: Copepods are among the most numerous animals, and play an essential role in the marine trophic web and biogeochemical cycles. The genus Oithona is described as having the highest density of copepods, and as being the most cosmopolite copepods. The Oithona male paradox describes the activity states of males, which are obliged to alternate between immobile and mobile phases for ambush feeding and mate searching, respectively, while the female is typically less mobile and often feeding. To characterize the molecular basis of this sexual dimorphism, we combined immunofluorescence, genomics, transcriptomics, and protein-protein interaction approaches. Results: Immunofluorescence of β3- and α-tubulin revealed two male-specific nervous ganglia in the lateral first segment of the Oithona nana male's prosome. In parallel, transcriptomic analysis showed male-specific enrichment for nervous system development-related transcripts. Twenty-seven Lin12-Notch Repeat domain-containing protein coding genes (LDPGs) of the 75 LDPGs identified in the genome were specifically expressed only in males. Furthermore, most of the LDPGs (27%) coded for proteins having predicted proteolytic activity, and non-LDPG proteolysis-associated transcripts showed a male-specific enrichment. Using yeast double-hybrid assays, we constructed a protein-protein interaction network involving two LDPs with proteases, extracellular matrix proteins, and neurogenesis-related proteins. Conclusions: For the first time, our study describes the lateral nervous ganglia of O. nana males, unique to copepods. We also demonstrated a role of LDPGs and their associated proteolysis in male-specific physiology, and we hypothesize a role of the LDPGs in the development of the lateral ganglia through directed lysis of the extracellular matrix for the growth of neurites and genesis of synapses.


2017 ◽  
Vol 8 (Suppl 1) ◽  
pp. S20-S21 ◽  
Author(s):  
Akram Safaei ◽  
Mostafa Rezaei Tavirani ◽  
Mona Zamanian Azodi ◽  
Alireza Lashay ◽  
Seyed Farzad Mohammadi ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Suthanthiram Backiyarani ◽  
Rajendran Sasikala ◽  
Simeon Sharmiladevi ◽  
Subbaraya Uma

AbstractBanana, one of the most important staple fruit among global consumers is highly sterile owing to natural parthenocarpy. Identification of genetic factors responsible for parthenocarpy would facilitate the conventional breeders to improve the seeded accessions. We have constructed Protein–protein interaction (PPI) network through mining differentially expressed genes and the genes used for transgenic studies with respect to parthenocarpy. Based on the topological and pathway enrichment analysis of proteins in PPI network, 12 candidate genes were shortlisted. By further validating these candidate genes in seeded and seedless accession of Musa spp. we put forward MaAGL8, MaMADS16, MaGH3.8, MaMADS29, MaRGA1, MaEXPA1, MaGID1C, MaHK2 and MaBAM1 as possible target genes in the study of natural parthenocarpy. In contrary, expression profile of MaACLB-2 and MaZEP is anticipated to highlight the difference in artificially induced and natural parthenocarpy. By exploring the PPI of validated genes from the network, we postulated a putative pathway that bring insights into the significance of cytokinin mediated CLAVATA(CLV)–WUSHEL(WUS) signaling pathway in addition to gibberellin mediated auxin signaling in parthenocarpy. Our analysis is the first attempt to identify candidate genes and to hypothesize a putative mechanism that bridges the gaps in understanding natural parthenocarpy through PPI network.


Sign in / Sign up

Export Citation Format

Share Document