scholarly journals Multiple Introductions of Rabbit Hemorrhagic Disease Virus Lagovirus europaeus/GI.2 in Africa

Biology ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 883
Author(s):  
Faten Ben Chehida ◽  
Ana M. Lopes ◽  
João V. Côrte-Real ◽  
Soufien Sghaier ◽  
Rim Aouini ◽  
...  

Rabbit hemorrhagic disease (RHD) causes high mortality and morbidity in European rabbits (Oryctolagus cuniculus). In Africa, the presence of the causative agent, the rabbit hemorrhagic disease virus (RHDV), was first confirmed in 1992 (genotype Lagovirus europaeus/GI.1). In 2015, the new genotype Lagovirus europaeus/GI.2 (RHDV2/b) was detected in Tunisia. Currently, GI.2 strains are present in several North and Sub-Saharan African countries. Considerable economic losses have been observed in industrial and traditional African rabbitries due to RHDV. Like other RNA viruses, this virus presents high recombination rates, with the emergence of GI.2 being associated with a recombinant strain. Recombination events have been detected with both pathogenic (GI.1b and GII.1) and benign (GI.3 and GI.4) strains. We obtained complete genome sequences of Tunisian GI.2 strains collected between 2018 and 2020 and carried out phylogenetic analyses. The results revealed that Tunisian strains are GI.3P-GI.2 strains that were most likely introduced from Europe. In addition, the results support the occurrence of multiple introductions of GI.2 into Africa, stressing the need for characterizing complete genome sequences of the circulating lagoviruses to uncover their origin. Continued monitoring and control of rabbit trade will grant a better containment of the disease and reduce the disease-associated economic losses.

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
V. K. O’Donnell ◽  
L. Xu ◽  
K. Moran ◽  
F. Mohamed ◽  
T. Boston ◽  
...  

ABSTRACT Five rabbit hemorrhagic disease virus type 2 (RHDV2) coding-complete genome sequences were obtained from the livers of domestic and wild rabbits during the 2020 outbreak in the United States. These represent the first available RHDV2 sequences from the United States.


Vaccines ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 172 ◽  
Author(s):  
Li Wang ◽  
Tian Xia ◽  
Tiantian Guo ◽  
Yi Ru ◽  
Yanping Jiang ◽  
...  

Rabbit hemorrhagic disease virus (RHDV) is the causative agent of rabbit hemorrhagic disease (RHD). RHD, characterized by hemorrhaging, liver necrosis, and high morbidity and mortality in rabbits and hares, causes severe economic losses in the rabbit industry worldwide. Due to the lack of an efficient in-vitro propagation system for RHDV, the current vaccine is produced via chemical inactivation of crude RHDV preparation derived from the livers of infected rabbits. Inactivated vaccines are effective for controlling RHD, but the potential problems of biosafety and animal welfare have negative effects on the application of inactivated vaccines. In this study, an oral Lactobacillus casei (L. casei) vaccine was used as an antigen delivery system to express RHDV capsid protein VP60(VP1)-eGFP fusion protein. The expression of the recombinant protein was confirmed via western blotting and immunofluorescence (IFA). Our results indicate that oral administration of this probiotic vaccine can stimulate secretory immunoglobulin A (SIgA)-based mucosal and IgG-based humoral immune responses in rabbits. The immunized rabbits were completely protected against challenge with RHDV. Our findings indicate that the L. casei expression system is a new strategy for the development of a safe and efficient vaccine against RHDV.


Viruses ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 897
Author(s):  
Shijun Bao ◽  
Kai An ◽  
Chunguo Liu ◽  
Xiaoyong Xing ◽  
Xiaoping Fu ◽  
...  

Rabbit hemorrhagic disease virus (RHDV) is the causative agent of rabbit hemorrhagic disease (RHD), and its infection results in mortality of 70–90% in farmed and wild rabbits. RHDV is thought to replicate strictly in rabbits. However, there are also reports showing that gene segments from the RHDV genome or antibodies against RHDV have been detected in other animals. Here, we report the detection and isolation of a RHDV from diseased Alpine musk deer (Moschussifanicus). The clinical manifestations in those deer were sudden death without clinical signs and hemorrhage in the internal organs. To identify the potential causative agents of the disease, we used sequence independent single primer amplification (SISPA) to detect gene segments from viruses in the tissue samples collected from the dead deer. From the obtained sequences, we identified some gene fragments showing very high nucleotide sequence similarity with RHDV genome. Furthermore, we identified caliciviral particles using an electron microscope in the samples. The new virus was designated as RHDV GS/YZ. We then designed primers based on the genome sequence of an RHDV strain CD/China to amplify and sequence the whole genome of the virus. The genome of the virus was determined to be 7437 nucleotides in length, sharing the highest genome sequence identity of 98.7% with a Chinese rabbit strain HB. The virus was assigned to the G2 genotype of RHDVs according to the phylogenetic analyses based on both the full-length genome and VP60 gene sequences. Animal experiments showed that GS/YZ infection in rabbits resulted in the macroscopic and microscopic lesions similar to that caused by the other RHDVs. This is the first report of RHDV isolated from Alpine musk deer, and our findings extended the epidemiology and host range of RHDV.


2021 ◽  
Vol 9 (5) ◽  
pp. 972
Author(s):  
Joana Abrantes ◽  
Ana M. Lopes

Since the early 1980s, the European rabbit (Oryctolagus cuniculus) has been threatened by the rabbit hemorrhagic disease (RHD). The disease is caused by a lagovirus of the family Caliciviridae, the rabbit hemorrhagic disease virus (RHDV). The need for detection, identification and further characterization of RHDV led to the development of several diagnostic tests. Owing to the lack of an appropriate cell culture system for in vitro propagation of the virus, much of the methods involved in these tests contributed to our current knowledge on RHD and RHDV and to the development of vaccines to contain the disease. Here, we provide a comprehensive review of the RHDV diagnostic tests used since the first RHD outbreak and that include molecular, histological and serological techniques, ranging from simpler tests initially used, such as the hemagglutination test, to the more recent and sophisticated high-throughput sequencing, along with an overview of their potential and their limitations.


2016 ◽  
Vol 215 ◽  
pp. 20-24 ◽  
Author(s):  
Bo Hu ◽  
Zhiyu Fan ◽  
Fang Wang ◽  
Yanhua Song ◽  
Houjun Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document