scholarly journals Cell Death Patterns Due to Warm Ischemia or Reperfusion in Renal Tubular Epithelial Cells Originating from Human, Mouse, or the Native Hibernator Hamster

Biology ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 48 ◽  
Author(s):  
Theodoros Eleftheriadis ◽  
Georgios Pissas ◽  
Georgia Antoniadi ◽  
Vassilios Liakopoulos ◽  
Ioannis Stefanidis

Ischemia–reperfusion injury contributes to the pathogenesis of many diseases, with acute kidney injury included. Hibernating mammals survive prolonged bouts of deep torpor with a dramatic drop in blood pressure, heart, and breathing rates, interspersed with short periods of arousal and, consequently, ischemia–reperfusion injury. Clarifying the differences under warm anoxia or reoxygenation between human cells and cells from a native hibernator may reveal interventions for rendering human cells resistant to ischemia–reperfusion injury. Human and hamster renal proximal tubular epithelial cells (RPTECs) were cultured under warm anoxia or reoxygenation. Mouse RPTECs were used as a phylogenetic control for hamster cells. Cell death was assessed by both cell imaging and lactate dehydrogenase (LDH) release assay, apoptosis by cleaved caspase-3, autophagy by microtubule-associated protein 1-light chain 3 B II (LC3B-II) to LC3B-I ratio, necroptosis by phosphorylated mixed-lineage kinase domain-like pseudokinase, reactive oxygen species (ROS) fluorometrically, and lipid peroxidation, the end-point of ferroptosis, by malondialdehyde. Human cells died after short periods of warm anoxia or reoxygenation, whereas hamster cells were extremely resistant. In human cells, apoptosis contributed to cell death under both anoxia and reoxygenation. Although under reoxygenation, ROS increased in both human and hamster RPTECs, lipid peroxidation-induced cell death was detected only in human cells. Autophagy was observed only in human cells under both conditions. Necroptosis was not detected in any of the evaluated cells. Clarifying the ways that are responsible for hamster RPTECs escaping from apoptosis and lipid peroxidation-induced cell death may reveal interventions for preventing ischemia–reperfusion-induced acute kidney injury in humans.

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Lin Wang ◽  
Yan Xu

Abstract Background and Aims Renal ischemia/reperfusion (I/R) is the main cause for acute kidney injury, Nicotiflorin can ameliorate ischemia/reperfusion injury in other organs, just like in cerebral ischemic damage. Therefore, this article intends to explore whether Nicotiflorin has protective effects on renal tubular epithelial cell after ischemia-reperfusion. On the one hand, We use C57 mice to establish the Nicotiflorin group, DMSO group, AKI group, sham group and control group to investigate whether Nicotiflorin can ameliorate ischemia-reperfusion injury of kidney. In other hand, we use CCK8 to explore the optimal concentration of Nicotiflorin in renal tubular epithelial cells and find optimal hypoxia oxygenation time, in order to analysis the influence of Nicotiflorin. The results indicate that Nicotiflorin can alleviate ischemia-reperfusion injury by reducing apoptosis of renal tubular epithelial cells. Method In this study, we investigated the protective mechanism of Nicotiflorin on ischemic acute kidney injury by analyzing gene chip in patients with acute kidney injury and proving in vitro and in vivo experiments. The main methods are as follows: (1) Multiple nucleus ischemia-reperfusion model transcriptase data were selected from the NCBI GEO Datasets database and analyzed to screen out related proteins that may be involved in ischemia-reperfusion kidney injury; (2) The tertiary structure of Nicotiflorin and related proteins was obtained from the SWISS-MODEL database and the PubChem compound database. The molecular docking between protein and Nicotiflorin was performed using Autodock software, and the binding energy between Nicotiflorin and the selected protein was analyzed to determine Nicotiflorin binds to each other; (3) We set different groups, such as control group, sham group, AKI group, Nicotiflorin group and DMSO group in animals. The blood function was used to detect renal injury related function indicators 24 hours after modeling. Renal tissue samples were collected for real-time fluorescent RT-PCR, Western blotting and histopathological analysis; (4)Renal tubular epithelial cells were treated with different concentrations of Nicotiflorin, CCK8 was screened for the most appropriate concentration, and the hypoxic and reoxygenated cells were intervened at the concentration to explore the interaction between Nicotiflorin and the docking protein, and to observe the protective mechanism of Nicotiflorin on the kidney Results Conclusion Nicotiflorin binds to ATF3 and promotes the expression of Cyr61 through protein interactions to improve renal ischemia-reperfusion injury.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Line Stattau Bisgaard ◽  
Pernille M Christensen ◽  
Ernst-Martin Füchtbauer ◽  
Lars Bo Nielsen ◽  
Christina Christoffersen

Abstract Background and Aims Acute kidney injury is a severe disease with detrimental outcomes. The underlying ethiology is still elusive and besides dialysis, treatment options are poor. Apolipoprotein M (apoM) is mainly expressed in liver and in proximal tubular epithelial cells in the kidney. In plasma, apoM associates with HDL particles via a retained signal peptide. ApoM is a carrier of sphingosine-1-phosphate (S1P), a small bioactive lipid involved in e.g. angiogenesis, lymphocyte trafficking, and vascular barrier function. Recently, it was shown that apoM/S1P protects against development of liver and lung fibrosis. In urine, apoM is normally undetectable in both wild type mice and healthy humans. However, lack of megalin receptors in proximal tubuli induces loss of apoM into the urine. The biological function of kidney-derived apoM is unknown, but it has been hypothesized that apoM might be secreted to the pre-urine to sequester molecules, such as S1P, from secretion. The aim of this study was to unravel the role of apoM in kidney biology and in acute kidney injury. Method A novel kidney specific human apoM transgenic mouse (RPTEC-hapoMTG), was generated by expressing human apoM under the control of the proximal tubular epithelial cell specific Sglt2 promoter. The effect of kidney specific apoM overexpression on acute kidney injury was accessed by inducing either cisplatin or ischemia/reperfusion injury. Further, a stable cell line of HK-2 cells overexpressing hapoM (HK-2hapoM-TG) was generated and the cells were cultured on transwells to assess the secretion of apoM to respectively the apical and basolateral site. Results hapoM was present in plasma from RPTEC-hapoMTG mice (mean 0.18 μM), indicating that kidney-derived apoM can be secreted to plasma. When assessing the secretion of hapoM from proximal tubular epithelial cells in vitro, studies support that apoM can be secreted to both the apical (urine) and basolateral (blood) compartment. No differences in kidney injury markers (plasma urea and creatinine) between RPTEC-hapoMTG and wild type (WT) mice subjected to cisplatin injections, or in kidney injury score determined by histological evaluation was found. Similar, we could not detect any histological difference between RPTEC-hapoMTG and WT mice after ischemia/reperfusion injury, and overexpression of hapoM did not affect kidney gene expression of inflammatory markers (i.e. IL6, MCP-1) compared to WT mice. Conclusion Our study suggests that apoM can be secreted to both the apical and basolateral compartment, supporting a role for apoM in sequestering molecules from secretion in urine. Transgenic overexpression of apoM in proximal tubular epithelial cells of mice did not protect against acute kidney injury.


2008 ◽  
Vol 86 (Supplement) ◽  
pp. 579
Author(s):  
T Abe ◽  
C Suzuki ◽  
Y Isaka ◽  
M Okumi ◽  
N Ichimaru ◽  
...  

Biology ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 74 ◽  
Author(s):  
Theodoros Eleftheriadis ◽  
Georgios Pissas ◽  
Evdokia Nikolaou ◽  
Vassilios Liakopoulos ◽  
Ioannis Stefanidis

During hibernation, repeated cycles of ischemia-reperfusion (I-R) leave vital organs without injury. Studying this phenomenon may reveal pathways applicable to improving outcomes in I-R injury-induced human diseases. We evaluated whether the H2S–nuclear factor erythroid 2-like 2 (Nrf2)–antioxidant proteins axis protects renal proximal tubular epithelial cells (RPTECs) of the native hibernator, the Syrian hamster, from reperfusion-induced cell death. To imitate I-R, the hamsters’, and control mice’s RPTECs were subjected to warm anoxia, washed, and then subjected to reoxygenation in fresh culture medium. Whenever required, the H2S-producing enzymes inhibitor aminooxyacetate or the lipid peroxidation inhibitor α-tocopherol were used. A handmade H2S detection methylene blue assay, a reactive oxygen species (ROS) detection kit, a LDH release cytotoxicity assay kit, and western blotting were used. Reoxygenation upregulated the H2S-producing enzymes cystathionine beta-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase in the hamster, but not in mouse RPTECs. As a result, H2S production increased only in the hamster RPTECs under reoxygenation conditions. Nrf2 expression followed the alterations of H2S production leading to an enhanced level of the antioxidant enzymes superoxide dismutase 3 and glutathione reductase, and anti-ferroptotic proteins ferritin H and cystine-glutamate antiporter. The upregulated antioxidant enzymes and anti-ferroptotic proteins controlled ROS production and rescued hamster RPTECs from reoxygenation-induced, lipid peroxidation-mediated cell death. In conclusion, in RPTECs of the native hibernator Syrian hamster, reoxygenation activates the H2S–Nrf2–antioxidant proteins axis, which rescues cells from reoxygenation-induced cell death. Further studies may reveal that the therapeutic activation of this axis in non-hibernating species, including humans, may be beneficial in I-R injury-induced diseases.


2020 ◽  
Vol 318 (6) ◽  
pp. F1531-F1538
Author(s):  
Ye Zhang ◽  
Jian-Jian Zhang ◽  
Xiu-Heng Liu ◽  
Lei Wang

Renal ischemia-reperfusion injury (I/R) usually occurs in renal transplantation and partial nephrectomy, which could lead to acute kidney injury. However, the effective treatment for renal I/R still remains limited. In the present study, we investigated whether inhibition of chromobox 7 (CBX7) could attenuate renal I/R injury in vivo and in vitro as well as the potential mechanisms. Adult male mice were subjected to right renal ischemia and reperfusion for different periods, both with and without the CBX7 inhibitor UNC3866. In addition, human kidney cells (HK-2) were subjected to a hypoxia/reoxygenation (H/R) process for different periods, both with or without the CBX7 inhibitor or siRNA for CBX7. The results showed that expression of CBX7, glucose regulator protein-78 (GRP78), phosphorylated eukaryotic translation initiation factor-2α (p-eIF2α), and C/EBP homologous protein (CHOP) were increased after extension of I/R and H/R periods. Moreover, overexpression of CBX7 could elevate the expression of CBX7, GRP78, p-eIF2α, and CHOP. However, CBX7 inhibition with either UNC3866 or genetic knockdown led to reduced expression of GRP78, p-eIF2α, and CHOP through nuclear factor-erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 activation in I/R and H/R injury. Furthermore, ML385, the Nrf2 inhibitor, could elevate endoplasmic reticulum stress levels, abrogating the protective effects of UNC3866 against renal I/R injury. In conclusion, our results demonstrated that CBX7 inhibition alleviated acute kidney injury by preventing endoplasmic reticulum stress via the Nrf2/HO-1 pathway, indicating that CBX7 inhibitor could be a potential therapeutic target for renal I/R injury.


Sign in / Sign up

Export Citation Format

Share Document