scholarly journals MiRNA Profiles of Extracellular Vesicles Secreted by Mesenchymal Stromal Cells—Can They Predict Potential Off-Target Effects?

Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1353
Author(s):  
Timo Z. Nazari-Shafti ◽  
Sebastian Neuber ◽  
Ana G. Duran ◽  
Vasileios Exarchos ◽  
Christien M. Beez ◽  
...  

The cardioprotective properties of extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) are currently being investigated in preclinical studies. Although microRNAs (miRNAs) encapsulated in EVs have been identified as one component responsible for the cardioprotective effect of MSCs, their potential off-target effects have not been sufficiently characterized. In the present study, we aimed to investigate the miRNA profile of EVs isolated from MSCs that were derived from cord blood (CB) and adipose tissue (AT). The identified miRNAs were then compared to known targets from the literature to discover possible adverse effects prior to clinical use. Our data show that while many cardioprotective miRNAs such as miR-22-3p, miR-26a-5p, miR-29c-3p, and miR-125b-5p were present in CB- and AT-MSC-derived EVs, a large number of known oncogenic and tumor suppressor miRNAs such as miR-16-5p, miR-23a-3p, and miR-191-5p were also detected. These findings highlight the importance of quality assessment for therapeutically applied EV preparations.

Cytotherapy ◽  
2015 ◽  
Vol 17 (6) ◽  
pp. S42
Author(s):  
Eliana Amati ◽  
Sabrina Sella ◽  
Martina Bernardi ◽  
Elena Albiero ◽  
Silvia Castegnaro ◽  
...  

2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Elga Bandeira ◽  
Helena Oliveira ◽  
Johnatas D. Silva ◽  
Rubem F. S. Menna-Barreto ◽  
Christina M. Takyia ◽  
...  

2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Alvin Tieu ◽  
Mitchell Slobodian ◽  
Dean A. Fergusson ◽  
Joshua Montroy ◽  
Dylan Burger ◽  
...  

Abstract Background Over the past decade, mesenchymal stromal cells have been increasingly investigated for their therapeutic potential in several different illnesses. However, cell therapy can be limited by potentially serious adverse events including cell embolus formation and tumorigenesis. Importantly, the protective effects of mesenchymal stromal cells are largely mediated by paracrine mechanisms including release of extracellular vesicles. This systematic review intends to synthesize the current knowledge of mesenchymal stromal cell-derived extracellular vesicles as a therapeutic option for preclinical models of disease, inflammation, or injury. Methods A systematic literature search of MEDLINE, Embase, and BIOSIS databases will be conducted. Interventional preclinical in vivo studies using extracellular vesicles derived from any tissue source of mesenchymal stromal cells will be included. Studies will be screened by abstract, and full-text by two independent reviewers. Eligible studies will undergo data extraction with subcategorization into domains based on disease. Methods utilized for extracellular vesicle characterization and isolation will be collected, as well as information on interventional traits, such as tissue source of mesenchymal stromal cells, dosage regimen, and vesicle modifications. Reported outcomes will be collected to determine which diseases studied may be impacted most from treatment with mesenchymal stromal cell-derived extracellular vesicles. Discussion This systematic review will summarize preclinical studies investigating the therapeutic efficacy of both small and large extracellular vesicles derived by mesenchymal stromal cells. Extracellular vesicles represent a possibility to harness the benefits of mesenchymal stromal cells with added benefits of reduced manufacturing costs and an improved safety profile. Hence, there has been an exponential increase in interest for developing this cell-free therapy with hundreds of preclinical studies published to date. However, a vast amount of heterogeneity between groups relates to methods of extracellular vesicle isolation, characterization, and study design. This review will capture this heterogeneity and identify the most commonly used and optimal approaches to evaluate mesenchymal stromal cell-derived extracellular vesicle treatment. A meta-analysis of outcomes within each disease domain will help elucidate which fields of research demonstrate promise for developing extracellular vesicles as a novel cell-free therapy. Summarizing this robust information on extracellular vesicles as an intervention can provide guidance for designing preclinical studies with hopes of future clinical translation.


2015 ◽  
Vol 24 (11) ◽  
pp. 1374-1376 ◽  
Author(s):  
Ana Valéria Gouveia de Andrade ◽  
Giuliana Bertolino ◽  
Julia Riewaldt ◽  
Karen Bieback ◽  
Jana Karbanová ◽  
...  

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Eliana Amati ◽  
Sabrina Sella ◽  
Omar Perbellini ◽  
Alberta Alghisi ◽  
Martina Bernardi ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1402-1402
Author(s):  
Christoph Roderburg ◽  
Anke Diehlmann ◽  
Frederik Wein ◽  
Anne Faber ◽  
Ulf Krause ◽  
...  

Abstract Self renewal and differentiation of hematopoietic stem cells (HSC) are governed by interaction with the supportive microenvironment of the bone marrow. Secreted factors as well as specific cell adhesion proteins are involved in this interaction. As an in vitro model system, the hematopoietic microenvironment can be mimicked by supportive mesenchymal stromal cells (MSC). We have compared the supportive potential of human MSC from bone marrow (BM) isolated under two different culture conditions (BM-MSC-M1 and BM-MSC-M2), from adipose tissue (AT) and umbilical cord blood (CB) that were all cultivated as described before (Wagner et al. Exp Hematol.2005;11:1402–1416.). As controls we have used the human fibroblast cell line HS68 and the murine fetal liver cell line AFT024. CD34+ cells were isolated from human cord blood and cultured in direct contact with irradiated stromal cells. After four, seven and twelve days the immunophenotype of the hematopoietic cells was analyzed by flow cytometry. Many progenitor cells cultured on BM-MSC or AFT024 maintained a primitive phenotype of CD34+/CD38- cells whereas the proportion of these cells was reduced upon cultivation with CB-MSC and cells cultured on AT-MSC and HS68 displayed a significantly higher expression of CD38 and lower expression of CD34. Furthermore, long term culture initiating-cell (LTC-IC) assays were performed on the different feeder layer. LTC-IC frequency was significantly higher on BM-MSC that were isolated under the two different culture conditions (BM-MSC-M1 1,15 ±0.11%; BM-MSC-M2 1.14±0.08%) and on CB-MSC (1.10±0.13%) compared to AT-MSC (0.32±0.09%) and HS68 (0.67±0.12%). We have compared gene expression profiles of BM-MSC-M1, BM-MSC-M2, CB-MSC, AT-MSC and HS68 by cDNA microarray analysis (51,144 different cDNA clones of the RZPD3 Unigene Set). Differential expression of various genes correlated with the observed differences in supportive potential. Among these were adhesion proteins like N-cadherin, cadherin11, fibronectin1, various integrins (ITGA1, ITGA5 and ITGB1) and VCAM1 as well as secreted proteins including osteonectin, CTGF and SDF1. Westerblot analysis verified on protein level that cadherin11, N-cadherin, and ITGB1 were highly expressed on BM-MSC as compared to AT-MSC and HS68 fibroblasts. In conclusion MSC from human bone marrow or from umbilical cord blood support to a significantly higher degree the maintenance and proliferation of primitive hematopoietic progenitors than MSC derived from adipose tissue. This affinity correlated with up-regulation of cadherin11, N-cadherin and intergrin-beta1 on BM-MSC and CB-MSC.


Cytotherapy ◽  
2008 ◽  
Vol 10 (5) ◽  
pp. 452-459 ◽  
Author(s):  
C. Perdikogianni ◽  
H. Dimitriou ◽  
E. Stiakaki ◽  
G. Martimianaki ◽  
M. Kalmanti

Sign in / Sign up

Export Citation Format

Share Document