scholarly journals The Nuts and Bolts of SARS-CoV-2 Spike Receptor-Binding Domain Heterologous Expression

Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1812
Author(s):  
Mariano Maffei ◽  
Linda Celeste Montemiglio ◽  
Grazia Vitagliano ◽  
Luigi Fedele ◽  
Shaila Sellathurai ◽  
...  

COVID-19 is a highly infectious disease caused by a newly emerged coronavirus (SARS-CoV-2) that has rapidly progressed into a pandemic. This unprecedent emergency has stressed the significance of developing effective therapeutics to fight the current and future outbreaks. The receptor-binding domain (RBD) of the SARS-CoV-2 surface Spike protein is the main target for vaccines and represents a helpful “tool” to produce neutralizing antibodies or diagnostic kits. In this work, we provide a detailed characterization of the native RBD produced in three major model systems: Escherichia coli, insect and HEK-293 cells. Circular dichroism, gel filtration chromatography and thermal denaturation experiments indicated that recombinant SARS-CoV-2 RBD proteins are stable and correctly folded. In addition, their functionality and receptor-binding ability were further evaluated through ELISA, flow cytometry assays and bio-layer interferometry.

2021 ◽  
Author(s):  
Mariano Maffei ◽  
Linda C Montemiglio ◽  
Grazia Vitagliano ◽  
Luigi Fedele ◽  
Shaila Sellathurai ◽  
...  

COVID-19 is a highly infectious disease caused by a newly emerged coronavirus (SARS-CoV-2) that has rapidly progressed into a pandemic. This unprecedent emergency has stressed the significance of developing effective therapeutics to fight current and future outbreaks. The receptor-binding domain (RBD) of the SARS-CoV-2 surface Spike protein is the main target for vaccines and represents a helpful tool to produce neutralizing antibodies or diagnostic kits. In this work, we provide a detailed characterization of the native RBD produced in three major model systems: Escherichia coli, insect and HEK-293 cells. Circular dichroism, gel filtration chromatography and thermal denaturation experiments indicated that recombinant SARS-CoV-2 RBD proteins are stable and correctly folded. In addition, their functionality and receptor-binding ability were further evaluated through ELISA, flow cytometry assays and bio-layer interferometry.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
John S. Schardt ◽  
Ghasidit Pornnoppadol ◽  
Alec A. Desai ◽  
Kyung Soo Park ◽  
Jennifer M. Zupancic ◽  
...  

AbstractMonoclonal antibodies that target SARS-CoV-2 with high affinity are valuable for a wide range of biomedical applications involving novel coronavirus disease (COVID-19) diagnosis, treatment, and prophylactic intervention. Strategies for the rapid and reliable isolation of these antibodies, especially potent neutralizing antibodies, are critical toward improved COVID-19 response and informed future response to emergent infectious diseases. In this study, single B cell screening was used to interrogate antibody repertoires of immunized mice and isolate antigen-specific IgG1+ memory B cells. Using these methods, high-affinity, potent neutralizing antibodies were identified that target the receptor-binding domain of SARS-CoV-2. Further engineering of the identified molecules to increase valency resulted in enhanced neutralizing activity. Mechanistic investigation revealed that these antibodies compete with ACE2 for binding to the receptor-binding domain of SARS-CoV-2. These antibodies may warrant further development for urgent COVID-19 applications. Overall, these results highlight the potential of single B cell screening for the rapid and reliable identification of high-affinity, potent neutralizing antibodies for infectious disease applications.


2021 ◽  
pp. eabd6990
Author(s):  
Sang Il Kim ◽  
Jinsung Noh ◽  
Sujeong Kim ◽  
Younggeun Choi ◽  
Duck Kyun Yoo ◽  
...  

Stereotypic antibody clonotypes exist in healthy individuals and may provide protective immunity against viral infections by neutralization. We observed that 13 out of 17 patients with COVID-19 had stereotypic variable heavy chain (VH) antibody clonotypes directed against the receptor-binding domain (RBD) of SARS-CoV-2 spike protein. These antibody clonotypes were comprised of immunoglobulin heavy variable (IGHV)3-53 or IGHV3-66 and immunoglobulin heavy joining (IGHJ)6 genes. These clonotypes included IgM, IgG3, IgG1, IgA1, IgG2, and IgA2 subtypes and had minimal somatic mutations, which suggested swift class switching after SARS-CoV-2 infection. The different immunoglobulin heavy variable chains were paired with diverse light chains resulting in binding to the RBD of SARS-CoV-2 spike protein. Human antibodies specific for the RBD can neutralize SARS-CoV-2 by inhibiting entry into host cells. We observed that one of these stereotypic neutralizing antibodies could inhibit viral replication in vitro using a clinical isolate of SARS-CoV-2. We also found that these VH clonotypes existed in six out of 10 healthy individuals, with IgM isotypes predominating. These findings suggest that stereotypic clonotypes can develop de novo from naïve B cells and not from memory B cells established from prior exposure to similar viruses. The expeditious and stereotypic expansion of these clonotypes may have occurred in patients infected with SARS-CoV-2 because they were already present.


Science ◽  
2021 ◽  
pp. eabg9175 ◽  
Author(s):  
Leonidas Stamatatos ◽  
Julie Czartoski ◽  
Yu-Hsin Wan ◽  
Leah J. Homad ◽  
Vanessa Rubin ◽  
...  

Emerging SARS-CoV-2 variants have raised concerns about resistance to neutralizing antibodies elicited by previous infection or vaccination. We examined whether sera from recovered and naïve donors collected prior to, and following immunizations with existing mRNA vaccines, could neutralize the Wuhan-Hu-1 and B.1.351 variants. Pre-vaccination sera from recovered donors neutralized Wuhan-Hu-1 and sporadically neutralized B.1.351, but a single immunization boosted neutralizing titers against all variants and SARS-CoV-1 by up to 1000-fold. Neutralization was due to antibodies targeting the receptor binding domain and was not boosted by a second immunization. Immunization of naïve donors also elicited cross-neutralizing responses, but at lower titers. Our study highlights the importance of vaccinating both uninfected and previously infected persons to elicit cross-variant neutralizing antibodies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Keng-Chang Tsai ◽  
Yu-Ching Lee ◽  
Tien-Sheng Tseng

The rapid spread of SARS-CoV-2 has caused the COVID-19 pandemic, resulting in the collapse of medical care systems and economic depression worldwide. To combat COVID-19, neutralizing antibodies have been investigated and developed. However, the evolutions (mutations) of the receptor-binding domain (RBD) of SARS-CoV-2 enable escape from neutralization by these antibodies, further impairing recognition by the human immune system. Thus, it is critical to investigate and predict the putative mutations of RBD that escape neutralizing immune responses. Here, we employed computational analyses to comprehensively investigate the mutational effects of RBD on binding to neutralizing antibodies and angiotensin-converting enzyme 2 (ACE2) and demonstrated that the RBD residues K417, L452, L455, F456, E484, G485, F486, F490, Q493, and S494 were consistent with clinically emerging variants or experimental observations of attenuated neutralizations. We also revealed common hotspots, Y449, L455, and Y489, that exerted comparable destabilizing effects on binding to both ACE2 and neutralizing antibodies. Our results provide valuable information on the putative effects of RBD variants on interactions with neutralizing antibodies. These findings provide insights into possible evolutionary hotspots that can escape recognition by these antibodies. In addition, our study results will benefit the development and design of vaccines and antibodies to combat the newly emerging variants of SARS-CoV-2.


2020 ◽  
Vol 5 (52) ◽  
pp. eabe0367 ◽  
Author(s):  
Anita S. Iyer ◽  
Forrest K. Jones ◽  
Ariana Nodoushani ◽  
Meagan Kelly ◽  
Margaret Becker ◽  
...  

We measured plasma and/or serum antibody responses to the receptor-binding domain (RBD) of the spike (S) protein of SARS-CoV-2 in 343 North American patients infected with SARS-CoV-2 (of which 93% required hospitalization) up to 122 days after symptom onset and compared them to responses in 1548 individuals whose blood samples were obtained prior to the pandemic. After setting seropositivity thresholds for perfect specificity (100%), we estimated sensitivities of 95% for IgG, 90% for IgA, and 81% for IgM for detecting infected individuals between 15 and 28 days after symptom onset. While the median time to seroconversion was nearly 12 days across all three isotypes tested, IgA and IgM antibodies against RBD were short-lived with median times to seroreversion of 71 and 49 days after symptom onset. In contrast, anti-RBD IgG responses decayed slowly through 90 days with only 3 seropositive individuals seroreverting within this time period. IgG antibodies to SARS-CoV-2 RBD were strongly correlated with anti-S neutralizing antibody titers, which demonstrated little to no decrease over 75 days since symptom onset. We observed no cross-reactivity of the SARS-CoV-2 RBD-targeted antibodies with other widely circulating coronaviruses (HKU1, 229 E, OC43, NL63). These data suggest that RBD-targeted antibodies are excellent markers of previous and recent infection, that differential isotype measurements can help distinguish between recent and older infections, and that IgG responses persist over the first few months after infection and are highly correlated with neutralizing antibodies.


2020 ◽  
Vol 56 (61) ◽  
pp. 8683-8686 ◽  
Author(s):  
Xiaoxiao Qi ◽  
Bixia Ke ◽  
Qian Feng ◽  
Deying Yang ◽  
Qinghai Lian ◽  
...  

Herein, we report that a recombinant fusion protein, containing a 457 amino acid SARS-CoV-2 receptor binding domain and a mouse IgG1 Fc domain, could induce highly potent neutralizing antibodies and stimulate humoral and cellular immunity in mice.


2020 ◽  
Vol 3 (2) ◽  
pp. 95-100 ◽  
Author(s):  
Xin Zeng ◽  
Lingfang Li ◽  
Jing Lin ◽  
Xinlei Li ◽  
Bin Liu ◽  
...  

Abstract The infection of the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused more than 200 000 deaths, but no vaccine or therapeutic monoclonal antibody is currently available. SARS-CoV-2 relies on its spike protein, in particular the receptor-binding domain (RBD), to bind human cell receptor angiotensin-converting enzyme 2 (ACE2) for viral entry, and thus targeting RBD holds the promise for preventing SARS-CoV-2 infection. In this work, a competitive biopanning strategy of a phage display antibody library was applied to screen blocking antibodies against RBD. High-affinity antibodies were enriched after the first round using a standard panning process in which RBD-His was immobilized as a bait. At the next two rounds, immobilized ACE2-Fc and free RBD-His were mixed with the enriched phage antibodies. Antibodies binding to RBD at epitopes different from ACE2-binding site were captured by the immobilized ACE2-Fc, forming a “sandwich” complex. Only antibodies competed with ACE2 can bind to the free RBD-His in the supernatant and be subsequently separated by the nickel-nitrilotriacetic acid magnetic beads. rRBD-15 from the competitive biopanning of our synthetic antibody library, Lib AB1, was produced as the full-length IgG1 format. It was proved to competitively block the binding of RBD to ACE2 and potently inhibit SARS-CoV-2 pseudovirus infection with IC50 values of 12 nM. Nevertheless, rRBD-16 from the standard biopanning can only bind to RBD in vitro, but not have the blocking or neutralization activity. Our strategy can efficiently isolate the blocking antibodies of RBD, and it would speed up the discovery of neutralizing antibodies against SARS-CoV-2.


Antibodies ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 2
Author(s):  
Xiaoyan Zeng ◽  
Fiona Legge ◽  
Chao Huang ◽  
Xiao Zhang ◽  
Yongjun Jiao ◽  
...  

In this work, we have used a new method to predict the epitopes of HA1 protein of influenza virus to several antibodies HC19, CR9114, BH151 and 4F5. While our results reproduced the binding epitopes of H3N2 or H5N1 for the neutralizing antibodies HC19, CR9114, and BH151 as revealed from the available crystal structures, additional epitopes for these antibodies were also suggested. Moreover, the predicted epitopes of H5N1 HA1 for the newly developed antibody 4F5 are located at the receptor binding domain, while previous study identified a region 76-WLLGNP-81 as the epitope. The possibility of antibody recognition of influenza virus via different mechanism by binding to different epitopes of an antigen is also discussed.


Sign in / Sign up

Export Citation Format

Share Document