scholarly journals The Integrated Effects of Brivaracetam, a Selective Analog of Levetiracetam, on Ionic Currents and Neuronal Excitability

Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 369
Author(s):  
Te-Yu Hung ◽  
Sheng-Nan Wu ◽  
Chin-Wei Huang

Brivaracetam (BRV) is recognized as a novel third-generation antiepileptic drug approved for the treatment of epilepsy. Emerging evidence has demonstrated that it has potentially better efficacy and tolerability than its analog, Levetiracetam (LEV). This, however, cannot be explained by their common synaptic vesicle-binding mechanism. Whether BRV can affect different ionic currents and concert these effects to alter neuronal excitability remains unclear. With the aid of patch clamp technology, we found that BRV concentration dependently inhibited the depolarization-induced M-type K+ current (IK(M)), decreased the delayed-rectifier K+ current (IK(DR)), and decreased the hyperpolarization-activated cation current in GH3 neurons. However, it had a concentration-dependent inhibition on voltage-gated Na+ current (INa). Under an inside-out patch configuration, a bath application of BRV increased the open probability of large-conductance Ca2+-activated K+ channels. Furthermore, in mHippoE-14 hippocampal neurons, the whole-cell INa was effectively depressed by BRV. In simulated modeling of hippocampal neurons, BRV was observed to reduce the firing of the action potentials (APs) concurrently with decreases in the AP amplitude. In animal models, BRV ameliorated acute seizures in both OD-1 and lithium-pilocarpine epilepsy models. However, LEV had effects in the latter only. Collectively, our study demonstrated BRV’s multiple ionic mechanism in electrically excitable cells and a potential concerted effect on neuronal excitability and hyperexcitability disorders.

1995 ◽  
Vol 269 (1) ◽  
pp. C250-C256 ◽  
Author(s):  
J. L. Rae ◽  
A. Rich ◽  
A. C. Zamudio ◽  
O. A. Candia

Prozac (fluoxetine), a compound used therapeutically in humans to combat depression, has substantial effects on ionic conductances in rabbit corneal epithelial cells and in cultured human lens epithelium. In corneal epithelium, it reduces the current due to the large-conductance potassium channels that dominate this preparation. Its effects seem largely to decrease the open probability while leaving the single-channel current amplitude unaltered. In cultured human epithelium, currents from calcium-activated potassium channels and inward rectifiers are unaffected by Prozac. Delayed-rectifier potassium currents are reduced by Prozac in a complicated way that involves both gating and single-channel current amplitude. Fast tetrodotoxin-blockable sodium currents are also decreased by Prozac in this preparation. For all of these ion conductance effects, Prozac concentrations of 10(-5) to 10(-4) M are required. Whereas these levels are 10- to 100-fold higher than the plasma levels achieved in therapeutic use in humans, they are comparable to or less than levels needed for many other blockers of the ionic conductances studied here.


1995 ◽  
Vol 73 (1) ◽  
pp. 73-79 ◽  
Author(s):  
G. Talukder ◽  
N. L. Harrison

1. The mechanisms of Zn2+ modulation of transient outward current (TOC) were studied in cultured rat hippocampal neurons, using the voltage-clamp technique. In the presence of micromolar concentrations of external Zn2+, the voltage dependence of activation and inactivation was shifted to more positive membrane potentials. The gating of TOC was unaltered by internal application of Zn2+. The effect of Zn2+ were not mimicked by external Ca2+, except at very high concentrations (> 10 mM). 2. The modulatory effects of external Zn2+ on TOC gating were not reproduced, antagonized, nor enhanced by lowering external ionic strength, indicating that modulation by Zn2+ does not occur via screening of bulk surface negative charge. 3. A range of other divalent and trivalent metal ions also was studied, and several were found to modulate the transient outward current when added to the extracellular medium. In particular, Pb2+, La3+, and Gd3+ were potent modulators, showing activity in the low micromolar range. Other metal ions were weaker modulators (e.g., Cd2+) or were without activity at the concentrations tested (Fe3+, Cu2+, Ni2+). 4. The same range of ions also was tested on the delayed rectifier K+ current in cultured rat hippocampal neurons. None of the ions studied had significant effects on delayed rectifier gating, although high (> or = 100 microM) concentrations of Pb2+ and La3+ reduced maximal current amplitude, suggesting the possibility of channel block.(ABSTRACT TRUNCATED AT 250 WORDS)


1998 ◽  
Vol 275 (1) ◽  
pp. L145-L154 ◽  
Author(s):  
C. Vandier ◽  
M. Delpech ◽  
P. Bonnet

Single smooth muscle cells of rabbit intrapulmonary artery were voltage clamped using the perforated-patch configuration of the patch-clamp technique. We observed spontaneous transient outward currents (STOCs) and a steady-state outward current. Because STOCs were tetraethylammonium sensitive and activated by Ca2+ influx, they were believed to represent activation of Ca2+-activated K+ channels. The steady-state outward current, which was sensitive to 4-aminopyridine, was the delayed rectifier K+ current. In cells voltage clamped at 0 mV, we found that STOCs were not randomly distributed in amplitude but were composed of multiples of 1.57 ± 0.56 pA/pF. The mean frequency of STOCs was 5.51 ± 3.49 Hz. Ryanodine (10 μM), caffeine (5 mM), thapsigargin (200 nM), and hypoxia [Formula: see text] = 10 mmHg) decreased STOCs. The effect of hypoxia on STOCs was partially reversible only if the experiment was conducted in the presence of thapsigargin. Hypoxia and thapsigargin decrease steady-state outward current. Thapsigargin and removal of external Ca2+abolished the effect of hypoxia, suggesting that hypoxia decreases steady-state outward current by a Ca2+-dependent mechanism.


1987 ◽  
Vol 90 (1) ◽  
pp. 27-47 ◽  
Author(s):  
A Hermann ◽  
C Erxleben

The action of charybdotoxin (ChTX), a peptide component isolated from the venom of the scorpion Leiurus quinquestriatus, was investigated on membrane currents of identified neurons from the marine mollusk, Aplysia californica. Macroscopic current recordings showed that the external application of ChTX blocks the Ca-activated K current in a dose- and voltage-dependent manner. The apparent dissociation constant is 30 nM at V = -30 mV and increases e-fold for a +50- to +70-mV change in membrane potential, which indicates that the toxin molecule is sensitive to approximately 35% of the transmembrane electric field. The toxin is bound to the receptor with a 1:1 stoichiometry and its effect is reversible after washout. The toxin also suppresses the membrane leakage conductance and a resting K conductance activated by internal Ca ions. The toxin has no significant effect on the inward Na or Ca currents, the transient K current, or the delayed rectifier K current. Records from Ca-activated K channels revealed a single channel conductance of 35 +/- 5 pS at V = 0 mV in asymmetrical K solution. The channel open probability increased with the internal Ca concentration and with membrane voltage. The K channels were blocked by submillimolar concentrations of tetraethylammonium ions and by nanomolar concentrations of ChTX, but were not blocked by 4-aminopyridine if applied externally on outside-out patches. From the effects of ChTX on K current and on bursting pacemaker activity, it is concluded that the termination of bursts is in part controlled by a Ca-activated K conductance.


1996 ◽  
Vol 271 (2) ◽  
pp. H478-H489 ◽  
Author(s):  
K. Tokube ◽  
T. Kiyosue ◽  
M. Arita

We examined the effects of oxygen free radicals (OFRs) on action potentials and membrane currents of guinea pig ventricular myocytes. OFRs produced biphasic changes in the action potential duration, initial lengthening (30 s after exposure to OFRs) and subsequent shortening (within 5 min). In voltage-clamp experiments, OFRs suppressed the L-type calcium current, the delayed rectifier K+ current, and the inward rectifier K+ current. In addition, OFRs increased the time-independent outward current (I(term)) at potentials greater than -30 mV. The increases in I(term) reflected activation of the ATP-sensitive K+ (KATP) channels, as glibenclamide (1 microM) blocked this current. In inside-out patches, OFRs significantly increased the open probability of the channel at a relatively narrow range of ATP concentrations (0.2–2 mM), and this effect was enhanced in the presence of ADP (0.1 mM) and abolished in the presence of either free radical scavengers or gliben-clamide. These findings are compatible with the notion that OFRs activate KATP channels by modulating ATP binding sites of the KATP channels, without affecting ADP binding or glibenclamide binding sites.


1995 ◽  
Vol 198 (3) ◽  
pp. 613-627 ◽  
Author(s):  
A R Mercer ◽  
J H Hayashi ◽  
J G Hildebrand

The modulatory effects of 5-hydroxytryptamine (5-HT or serotonin) on voltage-gated currents in central olfactory neurones of the moth Manduca sexta have been examined in vitro using whole-cell patch-clamp recording techniques. Central olfactory neurones were dissociated from the antennal lobes of animals at stage 5 of the 18 stages of metamorphic adult development. The modulatory actions of 5-HT on voltage-activated ionic currents were examined in a subset of morphologically identifiable antennal lobe neurones maintained for 2 weeks in primary cell culture. 5-HT caused reversible reduction of both a rapidly activating A-type K+ current and a relatively slowly activating K+ current resembling a delayed rectifier-type conductance. 5-HT also reduced the magnitude of voltage-activated Ca2+ influx in these cells. The functional significance of 5-HT-modulation of central neurones is discussed.


Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 188
Author(s):  
Te-Ling Lu ◽  
Zi-Han Gao ◽  
Shih-Wei Li ◽  
Sheng-Nan Wu

GAL-021 has recently been developed as a novel breathing control modulator. However, modifications of ionic currents produced by this agent remain uncertain, although its efficacy in suppressing the activity of big-conductance Ca2+-activated K+ (BKCa) channels has been reported. In pituitary tumor (GH3) cells, we found that the presence of GAL-021 decreased the amplitude of macroscopic Ca2+-activated K+ current (IK(Ca)) in a concentration-dependent manner with an effective IC50 of 2.33 μM. GAL-021-mediated reduction of IK(Ca) was reversed by subsequent application of verteporfin or ionomycin; however, it was not by that of diazoxide. In inside-out current recordings, the addition of GAL-021 to the bath markedly decreased the open-state probability of BKCa channels. This agent also resulted in a rightward shift in voltage dependence of the activation curve of BKCa channels; however, neither the gating charge of the curve nor single-channel conductance of the channel was changed. There was an evident lengthening of the mean closed time of BKCa channels in the presence of GAL-021, with no change in mean open time. The GAL-021 addition also suppressed M-type K+ current with an effective IC50 of 3.75 μM; however, its presence did not alter the amplitude of erg-mediated K+ current, or mildly suppressed delayed-rectifier K+ current. GAL-021 at a concentration of 30 μM could also suppress hyperpolarization-activated cationic current. In HEK293T cells expressing α-hSlo, the addition of GAL-021 was also able to suppress the BKCa-channel open probabilities, and GAL-021-mediated suppression of BKCa-channel activity was attenuated by further addition of BMS-191011. Collectively, the GAL-021 effects presented herein do not exclusively act on BKCa channels and these modifications on ionic currents exert significant influence on the functional activities of electrically excitable cells occurring in vivo.


1991 ◽  
Vol 98 (1) ◽  
pp. 1-17 ◽  
Author(s):  
E Perozo ◽  
C A Vandenberg ◽  
D S Jong ◽  
F Bezanilla

Phosphorylation of the delayed rectifier channel of squid potentiates the macroscopic K+ current and slows its activation kinetics. We have studied this phenomenon at the single channel level using the cut-open axon technique under steady-state conditions. In 10 mM external K+/310 mM internal K+ there are predominantly two types of channels present, a 20-pS and a 40-pS channel. In steady state at depolarized potentials, the 40-pS channel was most active, whereas the 20-pS channel tended to disappear due to a slow inactivation process. Two methods were developed to shift the population of channels toward a dephosphorylated state. One method consisted of predialyzing a whole axon with solutions containing no ATP, while recording the currents under axial-wire voltage clamp. A piece of axon was then removed and cut open, and single channel currents were recorded from the cut-open axon. A second method was based on the difference in diffusion coefficients for ATP and proteins such as the endogenous phosphatase. The axon was cut open in a solution that did not contain Ca2+ or Cl- in order to maintain the axoplasm structurally intact and permit endogenous phosphatase to act on the membrane while ATP diffused away, before removing the axoplasm and forming a membrane patch. When dephosphorylating conditions were used, the steady-state open probability of the 40-pS channel at 42 mV was very low (less than 0.0002), and the channel openings appeared as a series of infrequent, short-duration events. The channel activity was increased up to 150-fold by photoreleasing caged ATP inside the patch pipette in the presence of the catalytic subunit of protein kinase A. The sharp increase in open probability could be accounted for by a decrease of the slow component of the closed time distribution from 23 s to 170 ms with little change in the distribution of open times (1-2 ms) and no change in the single channel current amplitude. In voltage-jump experiments the contribution of the 40-pS channel to the delayed rectifier current was often small due to the large values of the latency to the first opening.


Sign in / Sign up

Export Citation Format

Share Document