Openings of cardiac KATP channel by oxygen free radicals produced by xanthine oxidase reaction

1996 ◽  
Vol 271 (2) ◽  
pp. H478-H489 ◽  
Author(s):  
K. Tokube ◽  
T. Kiyosue ◽  
M. Arita

We examined the effects of oxygen free radicals (OFRs) on action potentials and membrane currents of guinea pig ventricular myocytes. OFRs produced biphasic changes in the action potential duration, initial lengthening (30 s after exposure to OFRs) and subsequent shortening (within 5 min). In voltage-clamp experiments, OFRs suppressed the L-type calcium current, the delayed rectifier K+ current, and the inward rectifier K+ current. In addition, OFRs increased the time-independent outward current (I(term)) at potentials greater than -30 mV. The increases in I(term) reflected activation of the ATP-sensitive K+ (KATP) channels, as glibenclamide (1 microM) blocked this current. In inside-out patches, OFRs significantly increased the open probability of the channel at a relatively narrow range of ATP concentrations (0.2–2 mM), and this effect was enhanced in the presence of ADP (0.1 mM) and abolished in the presence of either free radical scavengers or gliben-clamide. These findings are compatible with the notion that OFRs activate KATP channels by modulating ATP binding sites of the KATP channels, without affecting ADP binding or glibenclamide binding sites.

1996 ◽  
Vol 118 (5) ◽  
pp. 1278-1284 ◽  
Author(s):  
Laura Guerra ◽  
Elisabetta Cerbai ◽  
Stefania Gessi ◽  
Pier Andrea Borea ◽  
Alessandro Mugelli

1989 ◽  
Vol 141 (1) ◽  
pp. 1-20
Author(s):  
R. R. Stewart ◽  
J. G. Nicholls ◽  
W. B. Adams

1. Na+, K+ and Ca2+ currents have been measured by voltage-clamp in Retzius (R), anterior pagoda (AP) and sensory (pressure, touch and nociceptive) cells dissected from the central nervous system (CNS) of the leech. These cells maintain their distinctive membrane properties and action potential configurations in culture. Currents carried by the individual ions were analysed by the use of channel blockers and by their kinetics. Since the cells are isopotential they can be voltage-clamped effectively. 2. Depolarization, as expected, gave rise to an early inward Na+ current followed by a delayed outward K+ current. In Na+-free medium containing tetraethylammonium (TEA+), and in the presence of 4-aminopyridine (4-AP), inward Ca2+ currents were revealed that inactivated slowly and were blocked by Cd2+ and Mn2+. 3. Na+ and Ca2+ currents were similar in their characteristics in R. AP and sensory neurones. In contrast, K+ currents showed marked differences. Three principal K+ currents were identified. These differed in their time courses of activation and inactivation and in their responses to Ca2+ channel blockers. 4. K+ currents of the A-type (IA) activated and inactivated rapidly, were not affected by Ca2+ channel blockers and were eliminated by steady-state inactivation at holding potentials of −30 mV. A-type K+ currents were found in AP cells and as a minor component of the outward current in R cells. A Ca2+-activated K+ current (IC), that inactivated more slowly and was reduced by Ca2+ channel blockers, constituted the major outward current in R cells. The third K+ current resembled the delayed rectifier currents (IK1 and IK2) of squid axons with slow activation and inactivation kinetics. Such currents were found in R cells and in the sensory neurones (T, P and N). 5. The principal differences in membrane properties of identified leech neurones can be explained in terms of the numbers of Na+ channels and the distinctive kinetics of K+ channels in each type of cell.


1986 ◽  
Vol 250 (3) ◽  
pp. H372-H377 ◽  
Author(s):  
G. J. Gross ◽  
N. E. Farber ◽  
H. F. Hardman ◽  
D. C. Warltier

Recent evidence suggests that oxygen free radicals may partially mediate irreversible ischemia-reperfusion injury in the myocardium. In the present study, the effect of a combination of two oxygen free radical scavengers, superoxide dismutase plus catalase (SOD + CAT), on the recovery of subendocardial segment function following 15 min of coronary artery occlusion followed by 3 h of reperfusion ("stunned" myocardium) was compared with a control group in barbital-anesthetized dogs. Myocardial segment shortening (%SS) in the subendocardium of nonischemic and ischemic areas was measured by sonomicrometry and regional blood flow by radioactive microspheres. SOD and CAT were infused into the left atrium 30 min before and throughout the occlusion period. Compared with the control group, %SS in the subendocardium of the ischemic region was significantly (P less than 0.05) greater in the SOD plus CAT-treated group during occlusion and throughout reperfusion. Since there were no significant differences in hemodynamics or regional myocardial blood flow between the SOD plus CAT and the control groups, these results suggest that toxic oxygen free radicals may be partially involved in the reversible ischemic injury that occurs during short periods of coronary occlusion followed by reperfusion.


1989 ◽  
Vol 256 (5) ◽  
pp. H1450-H1461 ◽  
Author(s):  
R. B. Kleiman ◽  
S. R. Houser

The properties of the inward rectifier K current (IK1) and the delayed rectifier K current (IK) were studied in single feline myocytes isolated from the right ventricle of normal cats and cats with experimentally induced right ventricular hypertrophy (RVH). IK1 demonstrated time-dependent decay during hyperpolarizations and showed inward rectification with a prominent negative-slope region between -30 and -10 mV. Both IK1 and IK was carried primarily by K ions. The activation of IK during depolarizations followed a monoexponential time course, whereas the deactivation of IK tail currents was either mono- or biexponential depending on the repolarization potential. IK showed marked rectification at positive potentials. A comparison of these currents in normal and hypertrophy myocytes revealed that in RVH the magnitude of IK1 is increased, whereas the magnitude of IK is decreased. IK showed steeper rectification, had slower activation, and had more rapid deactivation in RVH. These abnormalities of the IK may contribute to the prolongation of action potential duration, which characterizes pressure-overload cardiac hypertrophy.


2000 ◽  
Vol 278 (3) ◽  
pp. H806-H817 ◽  
Author(s):  
Gary A. Gintant

Although inactivation of the rapidly activating delayed rectifier current ( I Kr) limits outward current on depolarization, the role of I Kr (and recovery from inactivation) during repolarization is uncertain. To characterize I Krduring ventricular repolarization (and compare with the inward rectifier current, I K1), voltage-clamp waveforms simulating the action potential were applied to canine ventricular, atrial, and Purkinje myocytes. In ventricular myocytes, I Kr was minimal at plateau potentials but transiently increased during repolarizing ramps. The I Kr transient was unaffected by repolarization rate and maximal after 150-ms depolarizations (+25 mV). Action potential clamps revealed the I Kr transient terminating the plateau. Although peak I Kr transient density was relatively uniform among myocytes, potentials characterizing the peak transients were widely dispersed. In contrast, peak inward rectifier current ( I K1) density during repolarization was dispersed, whereas potentials characterizing I K1 defined a narrower (more negative) voltage range. In summary, rapidly activating I Kr provides a delayed voltage-dependent (and functionally time-independent) outward transient during ventricular repolarization, consistent with rapid recovery from inactivation. The heterogeneous voltage dependence of I Kr provides a novel means for modulating the contribution of this current during repolarization.


Blood ◽  
1995 ◽  
Vol 86 (3) ◽  
pp. 1043-1055 ◽  
Author(s):  
L Kapural ◽  
MB Feinstein ◽  
F O'Rourke ◽  
A Fein

Abstract In normal human megakaryocytes, we identified a delayed rectifier type of voltage-gated outward K+ current (DRK). In two human megakaryoblastic tumor cell lines (DAMI, CHRF-288–11) and the human erythroleukemia cell line (HEL) the DRK current was not detected. To determine if the absence of the DRK current in the tumor cells is the result of the underlying malignant state, we examined megakaryocytes from myelogenous leukemia patients. In 24 of 29 megakaryocytes from the myelogenous leukemia patients, the DRK current was greatly suppressed, whereas in the remaining 5 megakaryocytes a normal large amplitude DRK current was present. We had the opportunity to reexamine megakaryocytes from a patient with acute promyelocytic leukemia (M3), after chemotherapy. Whereas the DRK current was suppressed before treatment, the current reappeared after chemotherapy. Exposure to the adenylate cyclase activator, forskolin, caused the appearance of a voltage-gated outward current in the megakaryocytes of patients with acute myelogenous leukemia. This finding suggests either that the channels underlying the DRK current are present but somehow suppressed in megakaryocytes from these patients or that forskolin induces a different voltage-gated outward current. We suggest that the megakaryocytes from the myelogenous leukemia patients with suppressed DRK current are abnormal, whereas the others may be normal megakaryocytes. The suppression of the DRK current may be a contributory factor to the dysregulation of thrombopoiesis (Zittoun et al: Semin Hop Paris 44:183, 1968 and Rabellino et al: Blood 63:615, 1984) in myelogenous leukemias.


1992 ◽  
Vol 262 (1) ◽  
pp. C75-C83 ◽  
Author(s):  
C. H. Follmer ◽  
N. J. Lodge ◽  
C. A. Cullinan ◽  
T. J. Colatsky

The effects of cadmium on the delayed outward potassium current (IK) were investigated in isolated cat ventricular myocytes using the single suction pipette voltage-clamp technique. IK activation was examined using peak tail currents elicited after 750-ms voltage-clamp steps to selected membrane potentials from a holding potential of -40 mV. In the presence of Cd2+ (0.2 mM), peak tail currents increased from a control value of 85 +/- 12 to 125 +/- 18 pA (n = 4). Activation curves constructed from the average peak tail-current measurements in all experiments showed that Cd2+ shifted the voltage dependence of activation to more positive potentials by 16.4 +/- 2.0 mV and increased the slope factor of the activation curve from 6.1 +/- 0.2 to 6.9 +/- 0.2 mV. In the absence of Cd2+, increases in holding potential from -30 to -70 mV had no effect on the magnitude of the peak tail currents, suggesting that the Cd(2+)-induced increase was not the result of a voltage-dependent increase in the number of available K+ channels at the holding potential. Slow voltage ramps from -70 to +70 mV revealed that Cd2+ increased the outward current at membrane potentials positive to +20 mV and shifted the voltage range in which IK inwardly rectified to more positive potentials. The fully activated current-voltage relationship was also shifted to more positive potentials by Cd2+. Cd2+ did not alter channel selectivity for K+.(ABSTRACT TRUNCATED AT 250 WORDS)


2000 ◽  
Vol 279 (1) ◽  
pp. H130-H138 ◽  
Author(s):  
Gui-Rong Li ◽  
Baofeng Yang ◽  
Haiying Sun ◽  
Clive M. Baumgarten

A novel transient outward K+current that exhibits inward-going rectification ( I to.ir) was identified in guinea pig atrial and ventricular myocytes. I to.ir was insensitive to 4-aminopyridine (4-AP) but was blocked by 200 μmol/l Ba2+or removal of external K+. The zero current potential shifted 51–53 mV/decade change in external K+. I to.ir density was twofold greater in ventricular than in atrial myocytes, and biexponential inactivation occurs in both types of myocytes. At −20 mV, the fast inactivation time constants were 7.7 ± 1.8 and 6.1 ± 1.2 ms and the slow inactivation time constants were 85.1 ± 14.8 and 77.3 ± 10.4 ms in ventricular and atrial cells, respectively. The midpoints for steady-state inactivation were −36.4 ± 0.3 and −51.6 ± 0.4 mV, and recovery from inactivation was rapid near the resting potential (time constants = 7.9 ± 1.9 and 8.8 ± 2.1 ms, respectively). I to.ir was detected in Na+-containing and Na+-free solutions and was not blocked by 20 nmol/l saxitoxin. Action potential clamp revealed that I to.ir contributed an outward current that activated rapidly on depolarization and inactivated by early phase 2 in both tissues. Although it is well known that 4-AP-sensitive transient outward current is absent in guinea pig, this Ba2+-sensitive and 4-AP-insensitive K+ current has been overlooked.


2000 ◽  
Vol 92 (4) ◽  
pp. 1154-1159 ◽  
Author(s):  
Yasuo Tsutsumi ◽  
Shuzo Oshita ◽  
Hiroshi Kitahata ◽  
Yasuhiro Kuroda ◽  
Takashi Kawano ◽  
...  

Background The adenosine triphosphate (ATP)-sensitive potassium (KATP) channels protect myocytes during ischemia and reperfusion. This study investigated the effects of thiamylal on the activities of KATP channels in isolated rat ventricular myocytes during simulated ischemia. Methods Male Wistar rats were anesthetized with ether. Single, quiescent ventricular myocytes were dispersed enzymatically. Membrane currents were recorded using patch-clamp techniques. In the cell-attached configuration, KATP channel currents were assessed before and during activation of these channels by 2,4-dinitrophenol and after administration of 25, 50, and 100 mg/l thiamylal. The open probability was determined from current-amplitude histograms. In the inside-out configuration, the current-voltage relation was obtained before and after the application of thiamylal (50 mg/1). Results In the cell-attached configuration, 2,4-dinitrophenol caused frequent channel opening. 2,4-Dinitrophenol-induced channel activities were reduced significantly by glibenclamide, suggesting that the channels studied were KATP channels. Open probability of KATP channels was reduced by thiamylal in a concentration-dependent manner. KATP channels could be activated in the inside-out configuration because of the absence of ATP. Thiamylal inhibited KATP channel activity without changing the single-channel conductance. Conclusions The results obtained in this study indicate that thiamylal inhibits KATP channel activities in cell-attached and inside-out patches, suggesting a direct action of this drug on these channels.


Sign in / Sign up

Export Citation Format

Share Document