scholarly journals Using a Convolutional Siamese Network for Image-Based Plant Species Identification with Small Datasets

Biomimetics ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 8 ◽  
Author(s):  
Geovanni Figueroa-Mata ◽  
Erick Mata-Montero

The application of deep learning techniques may prove difficult when datasets are small. Recently, techniques such as one-shot learning, few-shot learning, and Siamese networks have been proposed to address this problem. In this paper, we propose the use a convolutional Siamese network (CSN) that learns a similarity metric that discriminates between plant species based on images of leaves. Once the CSN has learned the similarity function, its discriminatory power is generalized to classify not just new pictures of the species used during training but also entirely new species for which only a few images are available. This is achieved by exposing the network to pairs of similar and dissimilar observations and minimizing the Euclidean distance between similar pairs while simultaneously maximizing it between dissimilar pairs. We conducted experiments to study two different scenarios. In the first one, the CSN was trained and validated with datasets that comprise 5, 10, 15, 20, 25, and 30 pictures per species, extracted from the well-known Flavia dataset. Then, the trained model was tested with another dataset composed of 320 images (10 images per species) also from Flavia. The obtained accuracy was compared with the results of feeding the same training, validation, and testing datasets to a convolutional neural network (CNN) in order to determine if there is a threshold value t for dataset size that defines the intervals for which either the CSN or the CNN has better accuracy. In the second studied scenario, the accuracy of both the CSN and the CNN—both trained and validated with the same datasets extracted from Flavia—were compared when tested on a set of images of leaves of 20 Costa Rican tree species that are not represented in Flavia.

Author(s):  
Bjørn Magnus Mathisen ◽  
Kerstin Bach ◽  
Agnar Aamodt

AbstractAquaculture as an industry is quickly expanding. As a result, new aquaculture sites are being established at more exposed locations previously deemed unfit because they are more difficult and resource demanding to safely operate than are traditional sites. To help the industry deal with these challenges, we have developed a decision support system to support decision makers in establishing better plans and make decisions that facilitate operating these sites in an optimal manner. We propose a case-based reasoning system called aquaculture case-based reasoning (AQCBR), which is able to predict the success of an aquaculture operation at a specific site, based on previously applied and recorded cases. In particular, AQCBR is trained to learn a similarity function between recorded operational situations/cases and use the most similar case to provide explanation-by-example information for its predictions. The novelty of AQCBR is that it uses extended Siamese neural networks to learn the similarity between cases. Our extensive experimental evaluation shows that extended Siamese neural networks outperform state-of-the-art methods for similarity learning in this task, demonstrating the effectiveness and the feasibility of our approach.


Author(s):  
Qing-Mao Zeng ◽  
Tong-Lin Zhu ◽  
Xue-Ying Zhuang ◽  
Ming-Xuan Zheng

Leaf is one of the most important organs of plant. Leaf contour or outline, usually a closed curve, is a fundamental morphological feature of leaf in botanical research. In this paper, a novel shape descriptor based on periodic wavelet series and leaf contour is presented, which we name as Periodic Wavelet Descriptor (PWD). The PWD of a leaf actually expresses the leaf contour in a vector form. Consequently, the PWD of a leaf has a wide range in practical applications, such as leaf modeling, plant species identification and classification, etc. In this work, the plant species identification and the leaf contour reconstruction, as two practical applications, are discussed to elaborate how to employ the PWD of a plant leaf in botanical research.


2018 ◽  
Vol 1004 ◽  
pp. 012015
Author(s):  
Guiqing He ◽  
Zhaoqiang Xia ◽  
Qiqi Zhang ◽  
Haixi Zhang ◽  
Jianping Fan

PLoS ONE ◽  
2016 ◽  
Vol 11 (1) ◽  
pp. e0147692 ◽  
Author(s):  
Alexandre Angers-Loustau ◽  
Mauro Petrillo ◽  
Valentina Paracchini ◽  
Dafni M. Kagkli ◽  
Patricia E. Rischitor ◽  
...  

Author(s):  
Shitala Prasad

In human's life plant plays an important part to balance the nature and supply food-&-medicine. The traditional manual plant species identification method is tedious and time-consuming process and requires expert knowledge. The rapid developments of mobile and ubiquitous computing make automated plant biometric system really feasible and accessible for anyone-anywhere-anytime. More and more research are ongoing to make it a more realistic tool for common man to access the agro-information by just a click. Based on this, the chapter highlights the significant growth of plant identification and leaf disease recognition over past few years. A wide range of research analysis is shown in this chapter in this context. Finally, the chapter showed the future scope and applications of AaaS and similar systems in agro-field.


2016 ◽  
Vol 81 ◽  
pp. 90-100 ◽  
Author(s):  
Jurandy Almeida ◽  
Jefersson A. dos Santos ◽  
Bruna Alberton ◽  
Leonor Patricia C. Morellato ◽  
Ricardo da S. Torres

Sign in / Sign up

Export Citation Format

Share Document