scholarly journals IQVision: An Image-Based Evaluation Tool for Quantitative Lateral Flow Immunoassay Kits

Biosensors ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 211
Author(s):  
Lalitha Pratyusha Bheemavarapu ◽  
Malay Ilesh Shah ◽  
Jayaraj Joseph ◽  
Mohanasankar Sivaprakasam

The development of quantitative lateral flow immunoassay test strips involves a lot of research from kit manufacturers’ standpoint. Kit providers need to evaluate multiple parameters, including the location of test regions, sample flow speed, required sample volumes, reaction stability time, etc. A practical visualization tool assisting manufacturers in this process is very much required for the design of more sensitive and reliable quantitative LFIA test strips. In this paper, we present an image-based quantitative evaluation tool determining the practical functionality of fluorescence-labelled LFIA test cartridges. Image processing-based algorithms developed and presented in this paper provide a practical analysis of sample flow rates, reaction stability times of samples under test, and detect any abnormalities in test strips. Evaluation of the algorithm is done with Glycated Hemoglobin (HbA1C) and Vitamin D test cartridges. Practical sample flow progress for HbA1C test cartridges is demonstrated. The reaction stability time of HbA1C test samples is measured to be 12 min, while that of Vitamin D test samples is 24 min. Experimental evaluation of the abnormality detection algorithm is carried out, and sample flow abnormalities are detected with 100% accuracy while membrane irregularities are detected with 96% accuracy.

2019 ◽  
Vol 1172 ◽  
pp. 012088
Author(s):  
Boris B Dzantiev ◽  
Nadezhda A Taranova ◽  
Anastasiya A Semeykina ◽  
Anatoly V Zherdev

Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 153 ◽  
Author(s):  
Shyatesa C. Razo ◽  
Natalia A. Panferova ◽  
Vasily G. Panferov ◽  
Irina V. Safenkova ◽  
Natalia V. Drenova ◽  
...  

Lateral flow immunoassay (LFIA) is a convenient tool for rapid field-based control of various bacterial targets. However, for many applications, the detection limits obtained by LFIA are not sufficient. In this paper, we propose enlarging gold nanoparticles’ (GNPs) size to develop a sensitive lateral flow immunoassay to detect Ralstonia solanacearum. This bacterium is a quarantine organism that causes potato brown rot. We fabricated lateral flow test strips using gold nanoparticles (17.4 ± 1.0 nm) as a label and their conjugates with antibodies specific to R. solanacearum. We proposed a signal enhancement in the test strips’ test zone due to the tetrachloroauric (III) anion reduction on the GNP surface, and the increase in size of the gold nanoparticles on the test strips was approximately up to 100 nm, as confirmed by scanning electron microscopy. Overall, the gold enhancement approach decreased the detection limit of R. solanacearum by 33 times, to as low as 3 × 104 cells∙mL–1 in the potato tuber extract. The achieved detection limit allows the diagnosis of latent infection in potato tubers. The developed approach based on gold enhancement does not complicate analyses and requires only 3 min. The developed assay together with the sample preparation and gold enlargement requires 15 min. Thus, the developed approach is promising for the development of lateral flow test strips and their subsequent introduction into diagnostic practice.


Author(s):  
Cheng Liu ◽  
Shuiqin Fang ◽  
Yachen Tian ◽  
Youxue Wu ◽  
Meijiao Wu ◽  
...  

Escherichia coli O157:H7 ( E. coli O157:H7) is a dangerous foodborne pathogen, mainly found in beef, milk, fruits, and their products, causing harm to human health or even death. Therefore, the detection of E. coli O157:H7 in food is particularly important. In this paper, we report a lateral flow immunoassay strip (LFIS) based on aggregation-induced emission (AIE) material labeling antigen as a fluorescent probe for the rapid detection of E. coli O157:H7. The detection sensitivity of the strip is 105 CFU/mL, which is 10 times higher than that of the colloidal gold test strip. This method has good specificity and stability and can be used to detect about 250 CFU of E. coli O157:H7 successfully in 25 g or 25 mL of beef, jelly, and milk. AIE-LFIS might be valuable in monitoring food pathogens for rapid detection.


2021 ◽  
Vol 334 ◽  
pp. 129673
Author(s):  
Wanghong He ◽  
Minli You ◽  
Zedong Li ◽  
Lei Cao ◽  
Feng Xu ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5185
Author(s):  
Fabio Di Nardo ◽  
Matteo Chiarello ◽  
Simone Cavalera ◽  
Claudio Baggiani ◽  
Laura Anfossi

The Lateral Flow Immunoassay (LFIA) is by far one of the most successful analytical platforms to perform the on-site detection of target substances. LFIA can be considered as a sort of lab-in-a-hand and, together with other point-of-need tests, has represented a paradigm shift from sample-to-lab to lab-to-sample aiming to improve decision making and turnaround time. The features of LFIAs made them a very attractive tool in clinical diagnostic where they can improve patient care by enabling more prompt diagnosis and treatment decisions. The rapidity, simplicity, relative cost-effectiveness, and the possibility to be used by nonskilled personnel contributed to the wide acceptance of LFIAs. As a consequence, from the detection of molecules, organisms, and (bio)markers for clinical purposes, the LFIA application has been rapidly extended to other fields, including food and feed safety, veterinary medicine, environmental control, and many others. This review aims to provide readers with a 10-years overview of applications, outlining the trends for the main application fields and the relative compounded annual growth rates. Moreover, future perspectives and challenges are discussed.


Sign in / Sign up

Export Citation Format

Share Document