scholarly journals Maximizing Rainfall in Lowland Paddy Rice throughWater Depths Control and Alternate Wetting and Drying Irrigation Technique in Southern Taiwan

Author(s):  
Victoriano Pascual ◽  
Yu-Min Wang
Agriculture ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 350 ◽  
Author(s):  
Björn Ole Sander ◽  
Pia Schneider ◽  
Ryan Romasanta ◽  
Kristine Samoy-Pascual ◽  
Evangeline B. Sibayan ◽  
...  

Reducing methane (CH4) emission from paddy rice production is an important target for many Asian countries in order to comply with their climate policy commitments. National greenhouse gas (GHG) inventory approaches like the Tier-2 approach of the Intergovernmental Panel on Climate Change (IPCC) are useful to assess country-scale emissions from the agricultural sector. In paddy rice, alternate wetting and drying (AWD) is a promising and well-studied water management technique which, as shown in experimental studies, can effectively reduce CH4 emissions. However, so far little is known about GHG emission rates under AWD when the technique is fully controlled by farmers. This study assesses CH4 and nitrous oxide (N2O) fluxes under continuous flooded (CF) and AWD treatments for seven subsequent seasons on farmers’ fields in a pumped irrigation system in Central Luzon, Philippines. Under AWD management, CH4 emissions were substantially reduced (73% in dry season (DS), 21% in wet season (WS)). In all treatments, CH4 is the major contributor to the total GHG emission and is, thus, identified as the driving force to the global warming potential (GWP). The contribution of N2O emissions to the GWP was higher in CF than in AWD, however, these only offset 15% of the decrease in CH4 emission and, therefore, did not jeopardize the strong reduction in the GWP. The study proves the feasibility of AWD under farmers’ management as well as the intended mitigation effect. Resulting from this study, it is recommended to incentivize dissemination strategies in order to improve the effectiveness of mitigation initiatives. A comparison of single CH4 emissions to calculated emissions with the IPCC Tier-2 inventory approach identified that, although averaged values showed a sufficient degree of accuracy, fluctuations for single measurement points have high variation which limit the use of the method for field-level assessments.


Author(s):  
Primitiva Andrea Mboyerwa ◽  
Peter W. Mtakwa ◽  
Kibebew Kibret ◽  
Abebe Aschalew ◽  
Norman T. Uphoff

Tanzania with 945 million hectares of land area and annual rainfall of 300 mm on 67% of its territorial land is considered as a semi-dry region in the world. Rice production in Tanzania needs to be increased to feed a growing population, whereas water for irrigation is getting scarce. One way to decrease water consumption in paddy fields is to change the irrigation regime for rice production and to replace continuous flooding with alternate wetting and drying. In order to investigate the effect of different regimes of irrigation and nitrogen fertilizer on yield and water productivity of hybrid rice, two greenhouse pot experiments comprising soils from upland and lowland production ecologies were conducted at Sokoine University of Agriculture, Tanzania during crop seasons of 2019. The experiment was arranged in split plots based on randomized completely block design with 3 replications. Water regimes were the main factor comparing continuous flooding (CF) and alternate wetting and drying (AWD) with nitrogen fertilizer levels as the sub-factor including absolute control , 0, 60, 90, 120 and 150 kg/ha. Alternate wetting and drying (AWD) improved water productivity in both upland and lowland production ecologies compared to CF. AWD increased yield under lowland production by 13.3% while in upland there was 18.5% decrease in yield. The average water use varied from 31.5 to 84 L pot-1 under upland trials, while in lowland trials it was 36 to 82.3 L. Higher yield and lower water application led to an increase in WP varying from 1.2 to 1.8 kg cm-3 under upland trials, and 0.6 to 1.5 kg cm-3 under lowland trials. The variation in water productivity among treatments was mainly due to the differences in the yield, water and nitrogen levels used in the production process. Both sets of trials recorded water saving up to 34.3% and 17.3% under lowland and upland trials, respectively. Under upland trials, the yield varied from 39.9 to 124.1 g pot-1 and in lowland trials yield ranged from 20.6 to 118.2 g pot-1 representing paddy rice. The measurements showed that less water can be used to produce more crops under alternative rice growing practices. The results are important for water-scarce areas, providing useful information to policy makers, farmers, agricultural departments, and water management boards in devising future climate-smart adaptation and mitigation strategies.


2021 ◽  
Vol 247 ◽  
pp. 106758
Author(s):  
Komlavi Akpoti ◽  
Elliott R. Dossou-Yovo ◽  
Sander J. Zwart ◽  
Paul Kiepe

2021 ◽  
Vol 58 (1) ◽  
pp. 33-42
Author(s):  
M Jeya Bharathi ◽  
M Raju ◽  
S Elamathi

Rice is a prime food crop for Asian countries. Wet land rice cultivation contributes maximum grain yield than dry land rice. Cauvery delta is a predominant area for rice cultivation in Tamil Nadu. Green algae growth during Kuruvai (June -August) season is a serious problem in wet land rice. These algae growth create anaerobic condition and prevent rice root respiration. The entire rice root was uprooted and floated on the stagnated water during initial stage. There is no preliminary study for green algae control in rice field. Soil and water samples were collected and analyzed for the nature of occurrence. Laboratory and field experiments were conducted to find out the remedial measures. The results of soil and water sample analysis showed that use of bore well water and dumping of phosphatic fertilizers leads to salt accumulation which favours the green algal growth. The results of the laboratory experiment revealed that the CuSO4 londox power, propiconazole and hexaconazole showed moderate inhibition on 5th day after treatment. The findings from field experiment indicated that use of conoweeder, alternate wetting and drying and CuSo4 drenching @ of 2.5 kg/ha when green algae appearance has just noticed or 5.0 kg/ha when severe growth occurred was effective in managing the green algae. Among all measures, alternate wetting and drying is the best management practices. CuSO4 drenching reduces around 70% of the growth. Even though CuSO4 react negatively with algae growth, soil pH changes and salt concentration play a major role on the CuSO4 action towards green algae. In order to maintain soil health condition, biofertilizer application, crop rotation, green manure trampling to be practised to recover the soil from alkaline pH, removal of accumulated salt and to control the algae growth using CuSO4.


2020 ◽  
Author(s):  
Ujjayant Chakravorty ◽  
◽  
Manzoor H Dar ◽  
Kyle Emerick ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document