scholarly journals Deductive Systems in Traditional and Modern Logic

2019 ◽  
Vol 17 (4) ◽  
pp. 26-40
Author(s):  
Valentin N. Karpovich

The concept of analyticity plays an important role in establishing truths. Both in the traditional logic of terms and modern logic of predicates, similar approaches are used to reconstruct the idea of reliable substantiation. Kant used the categories of synthetic a priori, Frege relied on the features of terms (individual constants and functions) to formulate the conditions for the application of definitions. As a result, primary statements as the beginning for substantiation presuppose the existence and uniqueness of a defined subject (definite descriptions), similar to the localization of objects in space and time by Kant’s synthetic apriori judgments.


Axioms ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 108
Author(s):  
Alex Citkin ◽  
Urszula Wybraniec-Skardowska

Since its inception, logic has studied the acceptable rules of reasoning, the rules that allow us to pass from certain statements, serving as premises or assumptions, to a statement taken as a conclusion [...]


2004 ◽  
Author(s):  
Sergei V. Babyonyshev
Keyword(s):  

Author(s):  
Paul M. Pietroski

This chapter summarizes the main themes. Humans naturally acquire generative procedures that connect meanings with pronunciations. These meanings are neither concepts nor extensions. Meanings are composable instructions for how to access and assemble concepts of a special sort. In particular, phrasal meanings are instructions for how to build monadic (i.e., predicative) concepts that are massively conjunctive. Theories of meaning should not be confused with theories of truth. Lexicalization is a process of introducing concepts that can be combined via simple operations whose inputs must be monadic or dyadic. In theorizing about meanings, we can and should eschew much of the powerful typology and combinatorial operations that the founders of modern logic introduced for very different purposes.


2020 ◽  
Vol 70 (6) ◽  
pp. 1259-1274

AbstractThe theory of fuzzy deductive systems in RM algebras is developed. Various characterizations of fuzzy deductive systems are given. It is proved that the set of all fuzzy deductive systems of a RM algebra 𝒜 is a complete lattice (it is distributive if 𝒜 is a pre-BBBCC algebra). Some characterizations of Noetherian RM algebras by fuzzy deductive systems are obtained. In pre-BBBZ algebras, the fuzzy deductive system generated by a fuzzy set is constructed. Finally, closed fuzzy deductive systems are defined and studied. It is showed that in finite CI and pre-BBBZ algebras, every fuzzy deductive system is closed. Moreover, the homomorphic properties of (closed) fuzzy deductive systems are provided.


1980 ◽  
Vol 3 (2) ◽  
pp. 235-268
Author(s):  
Ewa Orłowska

The central method employed today for theorem-proving is the resolution method introduced by J. A. Robinson in 1965 for the classical predicate calculus. Since then many improvements of the resolution method have been made. On the other hand, treatment of automated theorem-proving techniques for non-classical logics has been started, in connection with applications of these logics in computer science. In this paper a generalization of a notion of the resolution principle is introduced and discussed. A certain class of first order logics is considered and deductive systems of these logics with a resolution principle as an inference rule are investigated. The necessary and sufficient conditions for the so-called resolution completeness of such systems are given. A generalized Herbrand property for a logic is defined and its connections with the resolution-completeness are presented. A class of binary resolution systems is investigated and a kind of a normal form for derivations in such systems is given. On the ground of the methods developed the resolution system for the classical predicate calculus is described and the resolution systems for some non-classical logics are outlined. A method of program synthesis based on the resolution system for the classical predicate calculus is presented. A notion of a resolution-interpretability of a logic L in another logic L ′ is introduced. The method of resolution-interpretability consists in establishing a relation between formulas of the logic L and some sets of formulas of the logic L ′ with the intention of using the resolution system for L ′ to prove theorems of L. It is shown how the method of resolution-interpretability can be used to prove decidability of sets of unsatisfiable formulas of a given logic.


2001 ◽  
Vol 7 (4) ◽  
pp. 441-484 ◽  
Author(s):  
José Ferreirós

AbstractThis paper aims to outline an analysis and interpretation of the process that led to First-Order Logic and its consolidation as a core system of modern logic. We begin with an historical overview of landmarks along the road to modern logic, and proceed to a philosophical discussion casting doubt on the possibility of a purely rational justification of the actual delimitation of First-Order Logic. On this basis, we advance the thesis that a certain historical tradition was essential to the emergence of modern logic; this traditional context is analyzed as consisting in some guiding principles and, particularly, a set of exemplars (i.e., paradigmatic instances). Then, we proceed to interpret the historical course of development reviewed in section 1, which can broadly be described as a two-phased movement of expansion and then restriction of the scope of logical theory. We shall try to pinpoint ambivalencies in the process, and the main motives for subsequent changes. Among the latter, one may emphasize the spirit of modern axiomatics, the situation of foundational insecurity in the 1920s, the resulting desire to find systems well-behaved from a proof-theoretical point of view, and the metatheoretical results of the 1930s. Not surprisingly, the mathematical and, more specifically, the foundational context in which First-Order Logic matured will be seen to have played a primary role in its shaping.Mathematical logic is what logic, through twenty-five centuries and a few transformations, has become today. (Jean van Heijenoort)


2009 ◽  
Vol 74 (3) ◽  
pp. 780-810 ◽  
Author(s):  
Nikolaos Galatos ◽  
Constantine Tsinakis

AbstractEquivalences and translations between consequence relations abound in logic. The notion of equivalence can be denned syntactically, in terms of translations of formulas, and order-theoretically, in terms of the associated lattices of theories. W. Blok and D. Pigozzi proved in [4] that the two definitions coincide in the case of an algebraizable sentential deductive system. A refined treatment of this equivalence was provided by W. Blok and B. Jónsson in [3]. Other authors have extended this result to the cases of κ-deductive systems and of consequence relations on associative, commutative, multiple conclusion sequents. Our main result subsumes all existing results in the literature and reveals their common character. The proofs are of order-theoretic and categorical nature.


1962 ◽  
Vol 27 (1) ◽  
pp. 58-72 ◽  
Author(s):  
Timothy Smiley

Anyone who reads Aristotle, knowing something about modern logic and nothing about its history, must ask himself why the syllogistic cannot be translated as it stands into the logic of quantification. It is now more than twenty years since the invention of the requisite framework, the logic of many-sorted quantification.In the familiar first-order predicate logic generality is expressed by means of variables and quantifiers, and each interpretation of the system is based upon the choice of some class over which the variables may range, the only restriction placed on this ‘domain of individuals’ being that it should not be empty.


Sign in / Sign up

Export Citation Format

Share Document