scholarly journals “No Pain No Gain”: Evidence from a Parcel-Wise Brain Morphometry Study on the Volitional Quality of Elite Athletes

2020 ◽  
Vol 10 (7) ◽  
pp. 459 ◽  
Author(s):  
Gaoxia Wei ◽  
Ruoguang Si ◽  
Youfa Li ◽  
Ying Yao ◽  
Lizhen Chen ◽  
...  

Volition is described as a psychological construct with great emphasis on the sense of agency. During volitional behavior, an individual always presents a volitional quality, an intrapersonal trait for dealing with adverse circumstances, which determines the individual’s persistence of action toward their intentions or goals. Elite athletes are a group of experts with superior volitional quality and, thereby, could be regarded as the natural subject pool to investigate this mental trait. The purpose of this study was to examine brain morphometric characteristics associated with volitional quality by using magnetic resonance imaging (MRI) and the Scale of Volitional Quality. We recruited 16 national-level athletes engaged in short track speed skating and 18 healthy controls matched with age and gender. A comparison of a parcel-wise brain anatomical characteristics of the healthy controls with those of the elite athletes revealed three regions with significantly increased cortical thickness in the athlete group. These regions included the left precuneus, the left inferior parietal lobe, and the right superior frontal lobe, which are the core brain regions involved in the sense of agency. The mean cortical thickness of the left inferior parietal lobe was significantly correlated with the independence of volitional quality (a mental trait that characterizes one’s intendency to control his/her own behavior and make decisions by applying internal standards and/or objective criteria). These findings suggest that sports training is an ideal model for better understanding the neural mechanisms of volitional behavior in the human brain.

2012 ◽  
Vol 136 (1-3) ◽  
pp. 43-50 ◽  
Author(s):  
John F. Smiley ◽  
Kira Konnova ◽  
Cynthia Bleiwas

2020 ◽  
Vol 30 (7) ◽  
pp. 4076-4091
Author(s):  
Ryu Ohata ◽  
Tomohisa Asai ◽  
Hiroshi Kadota ◽  
Hiroaki Shigemasu ◽  
Kenji Ogawa ◽  
...  

Abstract The sense of agency is defined as the subjective experience that “I” am the one who is causing the action. Theoretical studies postulate that this subjective experience is developed through multistep processes extending from the sensorimotor to the cognitive level. However, it remains unclear how the brain processes such different levels of information and constitutes the neural substrates for the sense of agency. To answer this question, we combined two strategies: an experimental paradigm, in which self-agency gradually evolves according to sensorimotor experience, and a multivoxel pattern analysis. The combined strategies revealed that the sensorimotor, posterior parietal, anterior insula, and higher visual cortices contained information on self-other attribution during movement. In addition, we investigated whether the found regions showed a preference for self-other attribution or for sensorimotor information. As a result, the right supramarginal gyrus, a portion of the inferior parietal lobe (IPL), was found to be the most sensitive to self-other attribution among the found regions, while the bilateral precentral gyri and left IPL dominantly reflected sensorimotor information. Our results demonstrate that multiple brain regions are involved in the development of the sense of agency and that these show specific preferences for different levels of information.


Cephalalgia ◽  
2015 ◽  
Vol 36 (6) ◽  
pp. 526-533 ◽  
Author(s):  
Catherine D Chong ◽  
Amaal J Starling ◽  
Todd J Schwedt

Background Migraine attacks manifest with hypersensitivities to light, sound, touch and odor. Some people with migraine have photosensitivity between migraine attacks, suggesting persistent alterations in the integrity of brain regions that process light. Although functional neuroimaging studies have shown visual stimulus induced “hyperactivation” of visual cortex regions in migraineurs between attacks, whether photosensitivity is associated with alterations in brain structure is unknown. Methods Levels of photosensitivity were evaluated using the Photosensitivity Assessment Questionnaire in 48 interictal migraineurs and 48 healthy controls. Vertex-by-vertex measurements of cortical thickness were assessed in 28 people with episodic migraine who had interictal photosensitivity (mean age = 35.0 years, SD = 12.1) and 20 episodic migraine patients without symptoms of interictal photosensitivity (mean age = 36.0 years, SD = 11.4) using a general linear model design. Results Migraineurs have greater levels of interictal photosensitivity relative to healthy controls. Relative to migraineurs without interictal photosensitivity, migraineurs with interictal photosensitivity have thicker cortex in several brain areas including the right lingual, isthmus cingulate and pericalcarine regions, and the left precentral, postcentral and supramarginal regions. Conclusion Episodic migraineurs with interictal photosensitivity have greater cortical thickness in the right parietal-occipital and left fronto-parietal regions, suggesting that persistent light sensitivity is associated with underlying structural alterations.


2005 ◽  
Vol 17 (6) ◽  
pp. 859-873 ◽  
Author(s):  
Árni Kristjánsson ◽  
Patrik Vuilleumier ◽  
Paresh Malhotra ◽  
Masud Husain ◽  
Jon Driver

We examined priming of visual search by repeated target location or color in two patients with left visual neglect and extinction, following strokes centered on the right inferior parietal lobe. Both patients, like the healthy controls we tested, showed intact priming, with performance speeded when either the location or color of a singleton target was repeated over successive trials in a standard search condition (Experiment 1). This was observed both from and to targets on the contralesional (left) side. Moreover, priming of search was still observed even when a return of fixation back to display-center was required between successive trials (Experiment 2). When briefer displays were used (Experiment 3), the patients often failed to detect left targets. This situation revealed an important dissociation: Whereas location priming only arose from preceding left targets that had been consciously detected, color priming (possibly arising within the intact ventral stream) did not depend on awareness of the preceding target. There was considerable color priming from missed targets. These findings demonstrate relatively intact priming of visual search by color and location in patients with right parietal damage, and also reveal that location priming may differ from color priming in requiring awareness.


2021 ◽  
Vol 11 (2) ◽  
pp. 192
Author(s):  
Salvatore Nigro ◽  
Benedetta Tafuri ◽  
Daniele Urso ◽  
Roberto De Blasi ◽  
Maria Elisa Frisullo ◽  
...  

Recent research on behavioral variant frontotemporal dementia (bvFTD) has shown that personality changes and executive dysfunctions are accompanied by a disease-specific anatomical pattern of cortical and subcortical atrophy. We investigated the structural topological network changes in patients with bvFTD in comparison to healthy controls. In particular, 25 bvFTD patients and 20 healthy controls underwent structural 3T MRI. Next, bilaterally averaged values of 34 cortical surface areas, 34 cortical thickness values, and six subcortical volumes were used to capture single-subject anatomical connectivity and investigate network organization using a graph theory approach. Relative to controls, bvFTD patients showed altered small-world properties and decreased global efficiency, suggesting a reduced ability to combine specialized information from distributed brain regions. At a local level, patients with bvFTD displayed lower values of local efficiency in the cortical thickness of the caudal and rostral middle frontal gyrus, rostral anterior cingulate, and precuneus, cuneus, and transverse temporal gyrus. A significant correlation was also found between the efficiency of caudal anterior cingulate thickness and Mini-Mental State Examination (MMSE) scores in bvFTD patients. Taken together, these findings confirm the selective disruption in structural brain networks of bvFTD patients, providing new insights on the association between cognitive decline and graph properties.


2021 ◽  
Author(s):  
Jinsong Tang ◽  
Qiuxia Wu ◽  
Chang Qi ◽  
An Xie ◽  
Jianbin Liu ◽  
...  

AbstractBackgroundA version of ketamine, called Esketamine has been approved for treatment-resistant depression (TRD). Ketamine (“K powder”), a “dissociative” anesthetic agent, however, has been used non-medically alone or with other illicit substances. Our previous studies showed a link between non-medical ketamine use and brain structural and functional alterations. We found dorsal prefrontal gray matter reduction in chronic ketamine users. It is unknown, however, whether these observations might parallel findings of cortical thickness alterations. This study aimed at exploring cortical thickness abnormalities following non-medical, long-term use of ketamine.MethodsStructural brain images were acquired for 95 patients with ketamine dependence, and 169 drug-free healthy controls. FreeSurfer software was used to measure cortical thickness for 68 brain regions. Cortical thickness was compared between the two groups using analysis of covariance (ANCOVA) with covariates of age, gender, educational level, smoking, drinking, and whole brain mean cortical thickness. Results were considered significant if the Bonferroni corrected P-value < 0.01.ResultsCompared to healthy controls, patients with ketamine dependence have widespread decreased cortical thickness, with the most extensive reductions in the frontal (including the dorsolateral prefrontal cortex, DLPFC) and parietal (including the precuneus) lobes. Increased cortical thickness was not observed in ketamine users relative to comparison subjects. Estimated total lifetime ketamine consumption is correlated with the right inferior parietal and the right rostral middle frontal cortical thickness reductions.ConclusionsThis study provides first evidence that, compared with healthy controls, chronic ketamine users had cortical thickness reductions.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1195
Author(s):  
Stefano Ferrea ◽  
Frederick Junker ◽  
Mira Korth ◽  
Kai Gruhn ◽  
Torsten Grehl ◽  
...  

Background: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder clinically characterized by muscle atrophy and progressive paralysis. In addition to the classical ALS affecting both the upper and lower motoneurons (UMN and LMN), other subtypes with the predominant (or even exclusive) affection of the UMN or LMN have been identified. This work sought to detect specific patterns of cortical brain atrophy in the UMN and LMN phenotypes to distinguish these two forms from the healthy state. Methods: Using high-resolution structural MRI and cortical thickness analysis, 38 patients with a diagnosis of ALS and predominance of either the UMN (n = 20) or the LMN (n = 18) phenotype were investigated. Results: Significant cortical thinning in the temporal lobe was found in both the ALS groups. Additionally, UMN patients displayed a significant thinning of the cortical thickness in the pre- and postcentral gyrus, as well as the paracentral lobule. By applying multivariate analyses based on the cortical thicknesses of 34 brain regions, ALS patients with either a predominant UMN or LMN phenotype were distinguished from healthy controls with an accuracy of 94% and UMN from LMN patients with an accuracy of 75%. Conclusions: These findings support previous hypothesis that neural degeneration in ALS is not confined to the sole motor regions. In addition, the amount of cortical thinning in the temporal lobe helps to distinguish ALS patients from healthy controls, that is, to support or discourage the diagnosis of ALS, while the cortical thickness of the precentral gyrus specifically helps to distinguish the UMN from the LMN phenotype.


2018 ◽  
Author(s):  
Ryu Ohata ◽  
Tomohisa Asai ◽  
Hiroshi Kadota ◽  
Hiroaki Shigemasu ◽  
Kenji Ogawa ◽  
...  

AbstractA sense of agency can be defined as a subjective experience that I am the one who is causing or generating an action. Several brain regions have been proposed as neural substrates of the subjective experience; however, how the information is processed and organized by each region to achieve the sense of agency still remains unclear. In this study, we have clarified the neural representations corresponding to three processes namely, sensorimotor error, feeling of agency, and judgment of agency. Specifically, we found that the widespread sensorimotor areas represent sensorimotor error information. The right inferior parietal lobe represents the information solely on self-/other-attribution even during movements, which corresponds to the feeling of agency. Finally, the right inferior frontal gyrus shows a distinct representation between self- and other-attribution immediately before reporting the judgment on the movement attribution. These results suggest that the brain builds a sense of agency by developing distinct types of information each corresponding to the three processes with the passage of time.


2010 ◽  
Vol 22 (11) ◽  
pp. 2627-2637 ◽  
Author(s):  
Ian D. Holloway ◽  
Daniel Ansari

Because number is an abstract quality of a set, the way in which a number is externally represented does not change its quantitative meaning. In this study, we examined the development of the brain regions that support format-independent representation of numerical magnitude. We asked children and adults to perform both symbolic (Hindu-Arabic numerals) and nonsymbolic (arrays of squares) numerical comparison tasks as well as two control tasks while their brains were scanned using fMRI. In a preliminary analysis, we calculated the conjunction between symbolic and nonsymbolic numerical comparison. We then examined in which brain regions this conjunction differed between children and adults. This analysis revealed a large network of visual and parietal regions that showed greater activation in adults relative to children. In our primary analysis, we examined age-related differences in the conjunction of symbolic and nonsymbolic comparison after subtracting the control tasks. This analysis revealed a much more limited set of regions including the right inferior parietal lobe near the intraparietal sulcus. In addition to showing increased activation to both symbolic and nonsymbolic magnitudes over and above activation related to response selection, this region showed age-related differences in the distance effect. Our findings demonstrate that the format-independent representation of numerical magnitude in the right inferior parietal lobe is the product of developmental processes of cortical specialization and highlight the importance of using appropriate control tasks when conducting developmental neuroimaging studies.


2019 ◽  

A study by Graeme Fairchild and colleagues has used a neuroimaging approach to compare the structural organization (or “covariance”) of brain regions between youths with different subtypes of conduct disorder (CD) and healthy controls (HC).


Sign in / Sign up

Export Citation Format

Share Document