sensorimotor processing
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 50)

H-INDEX

26
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Pavel Shekhtmeyster ◽  
Erin M. Carey ◽  
Daniela Duarte ◽  
Alexander Ngo ◽  
Grace Gao ◽  
...  

While the spinal cord is known to play critical roles in sensorimotor processing, including pain-related signaling, corresponding activity patterns in genetically defined cell types across spinal laminae have remained elusive. Calcium imaging has enabled cellular activity measurements in behaving rodents but is currently limited to superficial regions. Using chronically implanted microprisms, we imaged sensory and motor evoked activity in regions and at speeds inaccessible by other high-resolution imaging techniques. To enable translaminar imaging in freely behaving animals through implanted microprisms, we additionally developed wearable microscopes with custom-compound microlenses. This new integrated system addresses multiple challenges of previous wearable microscopes, including their limited working distance, resolution, contrast, and achromatic range. The combination of these innovations allowed us to uncover that dorsal horn astrocytes in behaving mice show somatosensory program-dependent and lamina-specific calcium excitation. Additionally, we show that tachykinin precursor 1 (Tac1)-expressing neurons exhibit upper laminae-restricted activity to acute mechanical pain but not locomotion.


Author(s):  
Fritz Günther ◽  
Sophia Antonia Press ◽  
Carolin Dudschig ◽  
Barbara Kaup

AbstractWhile a number of studies have repeatedly demonstrated an automatic activation of sensorimotor experience during language processing in the form of action-congruency effects, as predicted by theories of grounded cognition, more recent research has not found these effects for words that were just learned from linguistic input alone, without sensorimotor experience with their referents. In the present study, we investigate whether this absence of effects can be attributed to a lack of repeated experience and consolidation of the associations between words and sensorimotor experience in memory. To address these issues, we conducted four experiments in which (1 and 2) participants engaged in two separate learning phases in which they learned novel words from language alone, with an intervening period of memory-consolidating sleep, and (3 and 4) we employed familiar words whose referents speakers have no direct experience with (such as plankton). However, we again did not observe action-congruency effects in subsequent test phases in any of the experiments. This indicates that direct sensorimotor experience with word referents is a necessary requirement for automatic sensorimotor activation during word processing.


2021 ◽  
pp. 199-202
Author(s):  
Beatriz Calvo-Merino

The article reviewed in this chapter discusses how questions initially originated in cognitive neuroscience can be answered with collaborations with nonscientific disciplines, such as performing arts. The author describes the first study that showed dancer’s brain activity when observing dance movements. By investigating how the expert brain works, they demonstrated the important role of sensorimotor processing for movement perception, emotion perception, and aesthetic judgment. This work opened a channel of communication between neuroscientists and performing artists, enabling conversations that have generated novel questions of interest to both disciplines. The chapter discusses three fundamental insights: the importance of prior experience for perception, the importance of motor representations for perception, and the existence of a system for embodied aesthetics. Finally, the author provides some consideration on neuroscientists’ capacity to dissect the aesthetic experience and how this knowledge can be absorbed by the performing artist during the artistic and choreographic process.


2021 ◽  
Author(s):  
Fritz Guenther ◽  
Sophia Antonia Press ◽  
Carolin Dudschig ◽  
Barbara Kaup

While a number of studies have repeatedly demonstrated an automatic activation of sensorimotor experience during language processing in the form of action-congruency effects, as predicted by theories of grounded cognition, more recent research has not found these effects for words that were just learned from linguistic input alone, without sensorimotor experience with their referents. In the present study, we investigate whether this absence of effects can be attributed to a lack of repeated experience and consolidation of the associations between words and sensorimotor experience in memory. To address these issues, we conducted four experiments in which (1 and 2) participants engaged in two separate learning phases in which they learned novel words from language alone, with an intervening period of memory-consolidating sleep, and (3 and 4) we employed familiar words whose referents speakers have no direct experience with (such as plankton). However, we again did not observe action-congruency effects in subsequent test phases in any of the experiments. This indicates that direct sensorimotor experience with word referents is a necessary requirement for automatic sensorimotor activation during word processing.


Author(s):  
Guy A. Orban ◽  
Alessia Sepe ◽  
Luca Bonini

AbstractThe posterior parietal cortex (PPC) has long been understood as a high-level integrative station for computing motor commands for the body based on sensory (i.e., mostly tactile and visual) input from the outside world. In the last decade, accumulating evidence has shown that the parietal areas not only extract the pragmatic features of manipulable objects, but also subserve sensorimotor processing of others’ actions. A paradigmatic case is that of the anterior intraparietal area (AIP), which encodes the identity of observed manipulative actions that afford potential motor actions the observer could perform in response to them. On these bases, we propose an AIP manipulative action-based template of the general planning functions of the PPC and review existing evidence supporting the extension of this model to other PPC regions and to a wider set of actions: defensive and locomotor actions. In our model, a hallmark of PPC functioning is the processing of information about the physical and social world to encode potential bodily actions appropriate for the current context. We further extend the model to actions performed with man-made objects (e.g., tools) and artifacts, because they become integral parts of the subject’s body schema and motor repertoire. Finally, we conclude that existing evidence supports a generally conserved neural circuitry that transforms integrated sensory signals into the variety of bodily actions that primates are capable of preparing and performing to interact with their physical and social world.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jordan Mille ◽  
Simona M. Brambati ◽  
Marie Izaute ◽  
Guillaume T. Vallet

Consistent with embodied cognition, a growing evidence in young adults show that sensorimotor processing is at the core of cognition. Considering that this approach predicts direct interaction between sensorimotor processing and cognition, embodied cognition may thus be particularly relevant to study aging, since this population is characterized by concomitant changes in sensorimotor and cognitive processing. The present perspective aims at showing the value and interest to explore normal aging throughout embodiment by focusing on the neurophysiological and cognitive changes occurring in aging. To this end, we report some of the neurophysiological substrates underpinning the perceptual and memory interactions in older adults, from the low and high perceptual processing to the conjunction in the medial temporal lobe. We then explore how these changes could explain more broadly the cognitive changes associated with aging in terms of losses and gains.


2021 ◽  
Vol 118 (27) ◽  
pp. e2011905118
Author(s):  
Nadina O. Zweifel ◽  
Nicholas E. Bush ◽  
Ian Abraham ◽  
Todd D. Murphey ◽  
Mitra J. Z. Hartmann

As it becomes possible to simulate increasingly complex neural networks, it becomes correspondingly important to model the sensory information that animals actively acquire: the biomechanics of sensory acquisition directly determines the sensory input and therefore neural processing. Here, we exploit the tractable mechanics of the well-studied rodent vibrissal (“whisker”) system to present a model that can simulate the signals acquired by a full sensor array actively sampling the environment. Rodents actively “whisk” ∼60 vibrissae (whiskers) to obtain tactile information, and this system is therefore ideal to study closed-loop sensorimotor processing. The simulation framework presented here, WHISKiT Physics, incorporates realistic morphology of the rat whisker array to predict the time-varying mechanical signals generated at each whisker base during sensory acquisition. Single-whisker dynamics were optimized based on experimental data and then validated against free tip oscillations and dynamic responses to collisions. The model is then extrapolated to include all whiskers in the array, incorporating each whisker’s individual geometry. Simulation examples in laboratory and natural environments demonstrate that WHISKiT Physics can predict input signals during various behaviors, currently impossible in the biological animal. In one exemplary use of the model, the results suggest that active whisking increases in-plane whisker bending compared to passive stimulation and that principal component analysis can reveal the relative contributions of whisker identity and mechanics at each whisker base to the vibrissotactile response. These results highlight how interactions between array morphology and individual whisker geometry and dynamics shape the signals that the brain must process.


Author(s):  
Kunpeng Yao ◽  
Dagmar Sternad ◽  
Aude Billard

Many daily tasks involve the collaboration of both hands. Humans dexterously adjust hand poses and modulate the forces exerted by fingers in response to task demands. Hand pose selection has been intensively studied in unimanual tasks, but little work has investigated bimanual tasks. This work examines hand poses selection in a bimanual high-precision screwing task taken from watchmaking. Twenty right-handed subjects dismounted a screw on the watchface with a screwdriver in two conditions. Results showed that although subjects employed similar hand poses across steps within the same experimental conditions, the hand poses differed significantly in the two conditions. In the free-base condition, subjects needed to stabilize the watchface on the table. The role-distribution across hands was strongly influenced by hand dominance: the dominant hand manipulated the tool, whereas the non-dominant hand controlled the additional degrees of freedom that might impair performance. In contrast, in the fixed-base condition, the watchface was stationary. Subjects employed both hands even though single hand would have been sufficient. Importantly, hand poses decoupled the control of task-demanded force and torque across hands through virtual fingers that grouped multiple fingers into functional units. This preference for bimanual over unimanual control strategy could be an effort to reduce variability caused by mechanical couplings and to alleviate intrinsic sensorimotor processing burdens. To afford analysis of this variety of observations, a novel graphical matrix-based representation of the distribution of hand pose combinations was developed. Atypical hand poses that are not documented in extant hand taxonomies are also included.


Sign in / Sign up

Export Citation Format

Share Document