scholarly journals Brain Structural Covariance Networks in Behavioral Variant of Frontotemporal Dementia

2021 ◽  
Vol 11 (2) ◽  
pp. 192
Author(s):  
Salvatore Nigro ◽  
Benedetta Tafuri ◽  
Daniele Urso ◽  
Roberto De Blasi ◽  
Maria Elisa Frisullo ◽  
...  

Recent research on behavioral variant frontotemporal dementia (bvFTD) has shown that personality changes and executive dysfunctions are accompanied by a disease-specific anatomical pattern of cortical and subcortical atrophy. We investigated the structural topological network changes in patients with bvFTD in comparison to healthy controls. In particular, 25 bvFTD patients and 20 healthy controls underwent structural 3T MRI. Next, bilaterally averaged values of 34 cortical surface areas, 34 cortical thickness values, and six subcortical volumes were used to capture single-subject anatomical connectivity and investigate network organization using a graph theory approach. Relative to controls, bvFTD patients showed altered small-world properties and decreased global efficiency, suggesting a reduced ability to combine specialized information from distributed brain regions. At a local level, patients with bvFTD displayed lower values of local efficiency in the cortical thickness of the caudal and rostral middle frontal gyrus, rostral anterior cingulate, and precuneus, cuneus, and transverse temporal gyrus. A significant correlation was also found between the efficiency of caudal anterior cingulate thickness and Mini-Mental State Examination (MMSE) scores in bvFTD patients. Taken together, these findings confirm the selective disruption in structural brain networks of bvFTD patients, providing new insights on the association between cognitive decline and graph properties.

2020 ◽  
pp. 089198872096425
Author(s):  
Rakshathi Basavaraju ◽  
Xinyang Feng ◽  
Jeanelle France ◽  
Edward D. Huey ◽  
Frank A. Provenzano

Objectives: To understand the differential neuroanatomical substrates underlying apathy and depression in Frontotemporal dementia (FTD). Methods: T1-MRIs and clinical data of patients with behavioral and aphasic variants of FTD were obtained from an open database. Cortical thickness was derived, its association with apathy severity and difference between the depressed and not depressed were examined with appropriate covariates. Results: Apathy severity was significantly associated with cortical thinning of the lateral parts of the right sided frontal, temporal and parietal lobes. The right sided orbitofrontal, parsorbitalis and rostral anterior cingulate cortex were thicker in depressed compared to patients not depressed. Conclusions: Greater thickness of right sided ventromedial and inferior frontal cortex in depression compared to patients without depression suggests a possible requisite of gray matter in this particular area for the manifestation of depression in FTD. This study demonstrates a method for deriving neuroanatomical patterns across non-harmonized neuroimaging data in a neurodegenerative disease.


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A289-A289
Author(s):  
F Xiao ◽  
L Zhao ◽  
F Han

Abstract Introduction To evaluate resting state functional connectivity and topological properties of brain network in narcolepsy compared with healthy controls. Methods Resting state fMRI was performed in 26 adult narcolepsy patients and 30 matched healthy controls. MRI data was first analyzed by group independent component analysis, then a graph theoretical method was applied to evaluate topological properties within whole brain. Small-world network parameters and nodal topological properties were measured. Altered topological properties in brain areas between groups were selected as ROI-seeds, then functional connectivity among these ROI-seeds were compared between groups. Partial correlation analysis was performed to evaluate the relationship between sleepiness severity and functional connectivity or topological properties in the narcolepsy. Results 21 independent components out of 48 components were obtained. Compared with healthy controls, narcolepsy exhibited a significant decreased functional connectivity within the executive and salience network, while increased functional connectivity in bilateral frontal lobe within executive network can be detected in narcolepsy. There were no differences in small-world network properties between narcolepsy and healthy controls. The altered brain areas in nodal topological properties were mainly located in inferior frontal cortex, basal ganglia, anterior cingulate, sensory cortex, supplementary motor cortex and visual cortex between groups. In the partial correlation analysis, nodal topological properties in putamen, anterior cingulate and sensory cortex as well as functional connectivity between these brain regions were correlated with the severity of sleepiness (sleep latency, REM sleep latency and ESS) among narcolepsy. Conclusion Altered connectivity within executive network and salience network were found in narcolepsy. Functional connection changes between left frontal cortex and left caudate nucleus may be one of the parameters describing the severity of narcolepsy. Nodal topological properties alterations in left putamen and left posterior cingulate, changes in functional connectivity between left supplementary motor area and right occipital as well as changes in functional connectivity between left anterior cingulate gyrus and bilateral postcentral gyrus can be considered to be a specific indicator for evaluating the severity of narcolepsy. Support National Natural Science Foundation of China (81700088)National Program on Key Basic Research Project of China (973 Program, 2015CB856405)


2020 ◽  
Vol 10 (7) ◽  
pp. 459 ◽  
Author(s):  
Gaoxia Wei ◽  
Ruoguang Si ◽  
Youfa Li ◽  
Ying Yao ◽  
Lizhen Chen ◽  
...  

Volition is described as a psychological construct with great emphasis on the sense of agency. During volitional behavior, an individual always presents a volitional quality, an intrapersonal trait for dealing with adverse circumstances, which determines the individual’s persistence of action toward their intentions or goals. Elite athletes are a group of experts with superior volitional quality and, thereby, could be regarded as the natural subject pool to investigate this mental trait. The purpose of this study was to examine brain morphometric characteristics associated with volitional quality by using magnetic resonance imaging (MRI) and the Scale of Volitional Quality. We recruited 16 national-level athletes engaged in short track speed skating and 18 healthy controls matched with age and gender. A comparison of a parcel-wise brain anatomical characteristics of the healthy controls with those of the elite athletes revealed three regions with significantly increased cortical thickness in the athlete group. These regions included the left precuneus, the left inferior parietal lobe, and the right superior frontal lobe, which are the core brain regions involved in the sense of agency. The mean cortical thickness of the left inferior parietal lobe was significantly correlated with the independence of volitional quality (a mental trait that characterizes one’s intendency to control his/her own behavior and make decisions by applying internal standards and/or objective criteria). These findings suggest that sports training is an ideal model for better understanding the neural mechanisms of volitional behavior in the human brain.


2011 ◽  
Vol 17 (6) ◽  
pp. 1080-1093 ◽  
Author(s):  
C.B. Hartberg ◽  
K. Sundet ◽  
L.M. Rimol ◽  
U.K. Haukvik ◽  
E.H. Lange ◽  
...  

AbstractRelationships between cortical brain structure and neurocognitive functioning have been reported in schizophrenia, but findings are inconclusive, and only a few studies in bipolar disorder have addressed this issue. This is the first study to directly compare relationships between cortical thickness and surface area with neurocognitive functioning in patients with schizophrenia (n = 117) and bipolar disorder (n = 121) and healthy controls (n = 192). MRI scans were obtained, and regional cortical thickness and surface area measurements were analyzed for relationships with test scores from 6 neurocognitive domains. In the combined sample, cortical thickness in the right rostral anterior cingulate was inversely related to working memory, and cortical surface area in four frontal and temporal regions were positively related to neurocognitive functioning. A positive relationship between left transverse temporal thickness and processing speed was specific to schizophrenia. A negative relationship between right temporal pole thickness and working memory was specific to bipolar disorder. In conclusion, significant cortical structure/function relationships were found in a large sample of healthy controls and patients with schizophrenia or bipolar disorder. The differences that were found between schizophrenia and bipolar may indicate differential relationship patterns in the two disorders, which may be of relevance for understanding the underlying pathophysiology. (JINS, 2011, 17, 1080–1093)


Cephalalgia ◽  
2015 ◽  
Vol 36 (6) ◽  
pp. 526-533 ◽  
Author(s):  
Catherine D Chong ◽  
Amaal J Starling ◽  
Todd J Schwedt

Background Migraine attacks manifest with hypersensitivities to light, sound, touch and odor. Some people with migraine have photosensitivity between migraine attacks, suggesting persistent alterations in the integrity of brain regions that process light. Although functional neuroimaging studies have shown visual stimulus induced “hyperactivation” of visual cortex regions in migraineurs between attacks, whether photosensitivity is associated with alterations in brain structure is unknown. Methods Levels of photosensitivity were evaluated using the Photosensitivity Assessment Questionnaire in 48 interictal migraineurs and 48 healthy controls. Vertex-by-vertex measurements of cortical thickness were assessed in 28 people with episodic migraine who had interictal photosensitivity (mean age = 35.0 years, SD = 12.1) and 20 episodic migraine patients without symptoms of interictal photosensitivity (mean age = 36.0 years, SD = 11.4) using a general linear model design. Results Migraineurs have greater levels of interictal photosensitivity relative to healthy controls. Relative to migraineurs without interictal photosensitivity, migraineurs with interictal photosensitivity have thicker cortex in several brain areas including the right lingual, isthmus cingulate and pericalcarine regions, and the left precentral, postcentral and supramarginal regions. Conclusion Episodic migraineurs with interictal photosensitivity have greater cortical thickness in the right parietal-occipital and left fronto-parietal regions, suggesting that persistent light sensitivity is associated with underlying structural alterations.


2021 ◽  
Author(s):  
Jinsong Tang ◽  
Qiuxia Wu ◽  
Chang Qi ◽  
An Xie ◽  
Jianbin Liu ◽  
...  

AbstractBackgroundA version of ketamine, called Esketamine has been approved for treatment-resistant depression (TRD). Ketamine (“K powder”), a “dissociative” anesthetic agent, however, has been used non-medically alone or with other illicit substances. Our previous studies showed a link between non-medical ketamine use and brain structural and functional alterations. We found dorsal prefrontal gray matter reduction in chronic ketamine users. It is unknown, however, whether these observations might parallel findings of cortical thickness alterations. This study aimed at exploring cortical thickness abnormalities following non-medical, long-term use of ketamine.MethodsStructural brain images were acquired for 95 patients with ketamine dependence, and 169 drug-free healthy controls. FreeSurfer software was used to measure cortical thickness for 68 brain regions. Cortical thickness was compared between the two groups using analysis of covariance (ANCOVA) with covariates of age, gender, educational level, smoking, drinking, and whole brain mean cortical thickness. Results were considered significant if the Bonferroni corrected P-value < 0.01.ResultsCompared to healthy controls, patients with ketamine dependence have widespread decreased cortical thickness, with the most extensive reductions in the frontal (including the dorsolateral prefrontal cortex, DLPFC) and parietal (including the precuneus) lobes. Increased cortical thickness was not observed in ketamine users relative to comparison subjects. Estimated total lifetime ketamine consumption is correlated with the right inferior parietal and the right rostral middle frontal cortical thickness reductions.ConclusionsThis study provides first evidence that, compared with healthy controls, chronic ketamine users had cortical thickness reductions.


Cephalalgia ◽  
2018 ◽  
Vol 39 (5) ◽  
pp. 665-673 ◽  
Author(s):  
Stefano Magon ◽  
Arne May ◽  
Anne Stankewitz ◽  
Peter J Goadsby ◽  
Christoph Schankin ◽  
...  

Background Several previous studies have investigated cortical abnormalities, specifically cortical thickness, in patients with migraine, with variable results. The relatively small sample sizes of most previous studies may partially explain these inconsistencies. Objective To investigate differences of cortical thickness between control subjects and migraineurs in a large cohort. Methods Three Tesla MRI data of 131 patients (38 with and 93 without aura) and 115 control subjects were analysed. A vertex-wise linear model was applied controlling for age, gender and MRI scanner to investigate differences between groups and determine the impact of clinical factors on cortical thickness measures. Results Migraineurs showed areas of thinned cortex compared with controls bilaterally in the central sulcus, in the left middle-frontal gyrus, in left visual cortices and the right occipito-temporal gyrus. Frequency of migraine attacks and the duration of the disorder had a significant impact on cortical thickness in the sensorimotor cortex and middle-frontal gyrus. Patients without aura showed thinner cortex than controls bilaterally in the central sulcus and in the middle frontal gyrus, in the left primary visual cortices, in the left supramarginal gyrus and in the right cuneus. Patients with aura showed clusters of thinner cortex bilaterally in the subparietal sulcus (between the precuneus and posterior cingulate cortex), in the left intraparietal sulcus and in the right anterior cingulate. Conclusion These results indicate cortical abnormalities in specific brain regions in migraineurs. Some of the observed abnormalities may reflect a genetic susceptibility towards developing migraine attacks, while others are probably a consequence of repeated head pain attacks.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Haimeng Hu ◽  
Yining Lyu ◽  
Shihong Li ◽  
Zheng Yuan ◽  
Chuntao Ye ◽  
...  

Previous functional magnetic resonance imaging (fMRI) analyses have shown that the dorsal attention network (DAN) is involved in the pathophysiological changes of tinnitus, but few relevant studies have been conducted, and the conclusions to date are not uniform. The purpose of this research was to test whether there is a change in intrinsic functional connectivity (FC) patterns between the DAN and other brain regions in tinnitus patients. Thirty-one patients with persistent tinnitus and thirty-three healthy controls were enrolled in this study. A group independent component analysis (ICA), degree centrality (DC) analysis, and seed-based FC analysis were conducted. In the group ICA, the tinnitus patients showed increased connectivity in the left superior parietal gyrus in the DAN compared to the healthy controls. Compared with the healthy controls, the tinnitus patients showed increased DC in the left inferior parietal gyrus and decreased DC in the left precuneus within the DAN. The clusters within the DAN with significant differences in the ICA or DC analysis between the tinnitus patients and the healthy controls were selected as regions of interest (ROIs) for seeds. The tinnitus patients exhibited significantly increased FC from the left superior parietal gyrus to several brain regions, including the left inferior parietal gyrus, the left superior marginal gyrus, and the right superior frontal gyrus, and decreased FC to the right anterior cingulate cortex. The tinnitus patients exhibited decreased FC from the left precuneus to the left inferior occipital gyrus, left calcarine cortex, and left superior frontal gyrus compared with the healthy controls. The findings of this study show that compared with healthy controls, tinnitus patients have altered functional connections not only within the DAN but also between the DAN and other brain regions. These results suggest that it may be possible to improve the disturbance and influence of tinnitus by regulating the DAN.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1195
Author(s):  
Stefano Ferrea ◽  
Frederick Junker ◽  
Mira Korth ◽  
Kai Gruhn ◽  
Torsten Grehl ◽  
...  

Background: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder clinically characterized by muscle atrophy and progressive paralysis. In addition to the classical ALS affecting both the upper and lower motoneurons (UMN and LMN), other subtypes with the predominant (or even exclusive) affection of the UMN or LMN have been identified. This work sought to detect specific patterns of cortical brain atrophy in the UMN and LMN phenotypes to distinguish these two forms from the healthy state. Methods: Using high-resolution structural MRI and cortical thickness analysis, 38 patients with a diagnosis of ALS and predominance of either the UMN (n = 20) or the LMN (n = 18) phenotype were investigated. Results: Significant cortical thinning in the temporal lobe was found in both the ALS groups. Additionally, UMN patients displayed a significant thinning of the cortical thickness in the pre- and postcentral gyrus, as well as the paracentral lobule. By applying multivariate analyses based on the cortical thicknesses of 34 brain regions, ALS patients with either a predominant UMN or LMN phenotype were distinguished from healthy controls with an accuracy of 94% and UMN from LMN patients with an accuracy of 75%. Conclusions: These findings support previous hypothesis that neural degeneration in ALS is not confined to the sole motor regions. In addition, the amount of cortical thinning in the temporal lobe helps to distinguish ALS patients from healthy controls, that is, to support or discourage the diagnosis of ALS, while the cortical thickness of the precentral gyrus specifically helps to distinguish the UMN from the LMN phenotype.


2021 ◽  
Author(s):  
Heiko Pohl ◽  
Franz Riederer ◽  
Marius Moisa ◽  
Roger Luechinger ◽  
Peter S. Sandor ◽  
...  

Abstract Objective: To investigate cerebral iron concentrations in patients with episodic migraine and investigate correlations with clinical parameters, such as monthly migraine days or disease duration.Methods: We included episodic migraineurs and healthy controls from 18 to 80 years; headache diaries were kept during a four-week baseline period. All participants underwent MRI scans, including a multi-echo 3D gradient recalled echo sequence that allowed calculating quantitative susceptibility maps.We performed whole-brain analyses comparing the iron level of healthy controls and migraineurs and searched for regions in which migraineurs’ iron concentrations correlated with their migraine frequency or disease duration. The significance level was set at 0.001 (uncorrected), the extent threshold at ten voxels.Results: We included 15 patients and 18 controls. There were several brain regions such as the anterior cingulate cortex and the middle frontal gyrus, in which migraineurs stored more iron, but none in which controls had higher iron levels. Iron correlated positively with migraine frequency or disease duration in multiple brain regions. There was one region in which iron load correlated negatively with disease duration.Conclusions: Migraine predisposes to increased iron levels. Not every brain area with an altered iron concentration is active during migraine attacks, so perhaps the increased iron might not solely be due to migraine but to a common cause, such as a metabolic or information processing disorder.


Sign in / Sign up

Export Citation Format

Share Document