scholarly journals Synthesis and Characterization of Carbon/Nitrogen/Iron Based Nanoparticles by Laser Pyrolysis as Non-Noble Metal Electrocatalysts for Oxygen Reduction

2018 ◽  
Vol 4 (3) ◽  
pp. 43 ◽  
Author(s):  
Henri Perez ◽  
Virginie Jorda ◽  
Pierre Bonville ◽  
Jackie Vigneron ◽  
Mathieu Frégnaux ◽  
...  

This paper reports original results on the synthesis of Carbon/Nitrogen/Iron-based Oxygen Reduction Reaction (ORR) electrocatalysts by CO2 laser pyrolysis. Precursors consisted of two different liquid mixtures containing FeOOH nanoparticles or iron III acetylacetonate as iron precursors, being fed to the reactor as an aerosol of liquid droplets. Carbon and nitrogen were brought by pyridine or a mixture of pyridine and ethanol depending on the iron precursor involved. The use of ammonia as laser energy transfer agent also provided a potential nitrogen source. For each liquid precursor mixture, several syntheses were conducted through the step-by-step modification of NH3 flow volume fraction, so-called R parameter. We found that various feature such as the synthesis production yield or the nanomaterial iron and carbon content, showed identical trends as a function of R for each liquid precursor mixture. The obtained nanomaterials consisted in composite nanostructures in which iron based nanoparticles are, to varying degrees, encapsulated by a presumably nitrogen doped carbon shell. Combining X-ray diffraction and Mossbauer spectroscopy with acid leaching treatment and extensive XPS surface analysis allowed the difficult question of the nature of the formed iron phases to be addressed. Besides metal and carbide iron phases, data suggest the formation of iron nitride phase at high R values. Interestingly, electrochemical measurements reveal that the higher R the higher the onset potential for the ORR, what suggests the need of iron-nitride phase existence for the formation of active sites towards the ORR.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Karim Khan ◽  
Ayesha Khan Tareen ◽  
Muhammad Aslam ◽  
Sayed Ali Khan ◽  
Qasim khan ◽  
...  

AbstractSince the last decades, non-precious metal catalysts (NPMC), especially iron based electrocatalysts show sufficient activity, potentially applicant in oxygen reduction reaction (ORR), however they only withstand considerable current densities at low operating potentials. On the other hand iron based electrocatalysts are not stable at elevated cathode potentials, which is essential for high energy competence, and its remains difficult to deal. Therefore, via this research a simple approach is demonstrated that allows synthesis of nanosize Fe-doped mayenite electride, [Ca24Al28O64]4+·(e−)4 (can also write as, C12A7−xFex:e−, where doping level, x = 1) (thereafter, Fe-doped C12A7:e−), consist of abundantly available elements with gram level powder material production, based on simple citrate sol-gel method. The maximum achieved conductivity of this first time synthesized Fe-doped C12A7:e− composite materials was 249 S/cm. Consequently, Fe-doped C12A7:e− composite is cost-effective, more active and highly durable precious-metal free electrocatalyst, with 1.03 V onset potential, 0.89 V (RHE) half-wave potential, and ~5.9 mA/cm2 current density, which is higher than benchmark 20% Pt/C (5.65 mA/cm2, and 0.84 V). The Fe-doped C12A7:e− has also higher selectivity for desired 4e− pathway, and more stable than 20 wt% Pt/C electrode with higher immunity towards methanol poisoning. Fe-doped C12A7:e− loses was almost zero of its original activity after passing 11 h compared to the absence of methanol case, indicates that to introduce methanol has almost negligible consequence for ORR performance, which makes it highly desirable, precious-metal free electrocatalyst in ORR. This is primarily described due to coexistence of Fe-doped C12A7:e− related active sites with reduced graphene oxide (rGO) with pyridinic-nitrogen, and their strong coupling consequence along their porous morphology textures. These textures assist rapid diffusion of molecules to catalyst active sites quickly. In real system maximum power densities reached to 243 and 275 mW/cm2 for Pt/C and Fe-doped C12A7:e− composite, respectively.


ACS Catalysis ◽  
2012 ◽  
Vol 2 (12) ◽  
pp. 2761-2768 ◽  
Author(s):  
Wenmu Li ◽  
Jason Wu ◽  
Drew C. Higgins ◽  
Ja-Yeon Choi ◽  
Zhongwei Chen

2014 ◽  
Vol 2 (34) ◽  
pp. 14064-14070 ◽  
Author(s):  
Xiaojuan Wang ◽  
Junwen Zhou ◽  
He Fu ◽  
Wei Li ◽  
Xinxin Fan ◽  
...  

ZIF-67, a MOF with N-coordinated Co atoms, can assist the formation of active sites in oxygen reduction catalysts by pyrolysis and acid leaching.


2021 ◽  
Vol 50 (39) ◽  
pp. 13943-13950
Author(s):  
Haiyan Zhao ◽  
Li Chen ◽  
Yinghao Xu ◽  
He Wang ◽  
Jia-Yi Li ◽  
...  

A N,S-doped Fe-based electrocatalyst was mainly derived from the iron salt and biomass ligand. The single atomic Fe-based active sites and S-doped carbon matrixes cause the performance improvement of the oxygen reduction reaction in an alkaline solution.


2018 ◽  
Author(s):  
Chang Hyuck Choi ◽  
Hyung-Kyu Lim ◽  
Gajeon Chon ◽  
Min Wook Chung ◽  
Abdulrahman Altin ◽  
...  

Fuel cells efficiently convert chemical into electric energy, with promising application for clean transportation. In proton-exchange membrane fuel cells (PEMFCs), rare platinum metal catalyzes today the oxygen reduction reaction (ORR) while iron(cobalt)-nitrogen-carbon materials (Fe(Co)-N-C) are a promising alternative. Their active sites can be classified as atomically dispersed metal-ions coordinated to nitrogen atoms (MeNxCy moieties) or nitrogen functionalities (possibly influenced by sub-surface metallic particles). While their durability is a recognized challenge, its rational improvement is impeded by insufficient understanding of operando degradation mechanisms. Here, we show that FeNxCy moieties in a representative Fe-N-C catalyst are structurally stable but electrochemically unstable when exposed in acidic medium to H2O2, the main ORR byproduct. We reveal that exposure to H2O2 leaves iron-based catalytic sites untouched but decreases their turnover frequency (TOF) via oxidation of the carbon surface, leading to weakened O2 binding on iron-based sites. Their TOF is recovered upon electrochemical reduction of the carbon surface, demonstrating the proposed deactivation mechanism. Our results reveal a hitherto unsuspected deactivation mechanism during ORR in acidic medium. This study identifies the N-doped carbon surface as Achilles' heel during ORR catalysis in PEMFCs. Observed in acidic but not in alkaline electrolyte, these insights suggest that durable iron-nitrogen-carbon catalysts are within reach for PEMFCs if rational strategies minimizing the amount of H2O2 or reactive oxygen species (ROS) produced during ORR are developed.


2018 ◽  
Author(s):  
Chang Hyuck Choi ◽  
Hyung-Kyu Lim ◽  
Gajeon Chon ◽  
Min Wook Chung ◽  
Abdulrahman Altin ◽  
...  

Fuel cells efficiently convert chemical into electric energy, with promising application for clean transportation. In proton-exchange membrane fuel cells (PEMFCs), rare platinum metal catalyzes today the oxygen reduction reaction (ORR) while iron(cobalt)-nitrogen-carbon materials (Fe(Co)-N-C) are a promising alternative. Their active sites can be classified as atomically dispersed metal-ions coordinated to nitrogen atoms (MeNxCy moieties) or nitrogen functionalities (possibly influenced by sub-surface metallic particles). While their durability is a recognized challenge, its rational improvement is impeded by insufficient understanding of operando degradation mechanisms. Here, we show that FeNxCy moieties in a representative Fe-N-C catalyst are structurally stable but electrochemically unstable when exposed in acidic medium to H2O2, the main ORR byproduct. We reveal that exposure to H2O2 leaves iron-based catalytic sites untouched but decreases their turnover frequency (TOF) via oxidation of the carbon surface, leading to weakened O2 binding on iron-based sites. Their TOF is recovered upon electrochemical reduction of the carbon surface, demonstrating the proposed deactivation mechanism. Our results reveal a hitherto unsuspected deactivation mechanism during ORR in acidic medium. This study identifies the N-doped carbon surface as Achilles' heel during ORR catalysis in PEMFCs. Observed in acidic but not in alkaline electrolyte, these insights suggest that durable iron-nitrogen-carbon catalysts are within reach for PEMFCs if rational strategies minimizing the amount of H2O2 or reactive oxygen species (ROS) produced during ORR are developed.


2020 ◽  
Author(s):  
Travis Marshall-Roth ◽  
Nicole J. Libretto ◽  
Alexandra T. Wrobel ◽  
Kevin Anderton ◽  
Nathan D. Ricke ◽  
...  

Iron- and nitrogen-doped carbon (Fe-N-C) materials are leading candidates to replace platinum in fuel cells, but their active site structures are poorly understood. A leading postulate is that iron active sites in this class of materials exist in an Fe-N<sub>4</sub> pyridinic ligation environment. Yet, molecular Fe-based catalysts for the oxygen reduction reaction (ORR) generally feature pyrrolic coordination and pyridinic Fe-N<sub>4</sub> catalysts are, to the best of our knowledge, non-existent. We report the synthesis and characterization of a molecular pyridinic hexaazacyclophane macrocycle, (phen<sub>2</sub>N<sub>2</sub>)Fe, and compare its spectroscopic, electrochemical, and catalytic properties for oxygen reduction to a prototypical Fe-N-C material, as well as iron phthalocyanine, (Pc)Fe, and iron octaethylporphyrin, (OEP)Fe, prototypical pyrrolic iron macrocycles. N 1s XPS signatures for coordinated N atoms in (phen<sub>2</sub>N<sub>2</sub>)Fe are positively shifted relative to (Pc)Fe and (OEP)Fe, and overlay with those of Fe-N-C. Likewise, spectroscopic XAS signatures of (phen<sub>2</sub>N<sub>2</sub>)Fe are distinct from those of both (Pc)Fe and (OEP)Fe, and are remarkably similar to those of Fe-N-C with compressed Fe–N bond lengths of 1.97 Å in (phen<sub>2</sub>N<sub>2</sub>)Fe that are close to the average 1.94 Å length in Fe-N-C. Electrochemical studies establish that both (Pc)Fe and (phen<sub>2</sub>N<sub>2</sub>)Fe have relatively high Fe(III/II) potentials at ~0.6 V, ~300 mV positive of (OEP)Fe. The ORR onset potential is found to directly correlate with the Fe(III/II) potential leading to a ~300 mV positive shift in the onset of ORR for (Pc)Fe and (phen<sub>2</sub>N<sub>2</sub>)Fe relative to (OEP)Fe. Consequently, the ORR onset for (phen<sub>2</sub>N<sub>2</sub>)Fe and (Pc)Fe is within 150 mV of Fe-N-C. Unlike (OEP)Fe and (Pc)Fe, (phen<sub>2</sub>N<sub>2</sub>)Fe displays excellent selectivity for 4-electron ORR with <4% maximum H<sub>2</sub>O<sub>2</sub> production, comparable to Fe-N-C materials. The aggregate spectroscopic and electrochemical data establish (phen<sub>2</sub>N<sub>2</sub>)Fe as a pyridinic iron macrocycle that effectively models Fe-N-C active sites, thereby providing a rich molecular platform for understanding this important class of catalytic materials.<p><b></b></p>


Sign in / Sign up

Export Citation Format

Share Document