scholarly journals Characterization of Precursor-Dependent Steroidogenesis in Human Prostate Cancer Models

Cancers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 343 ◽  
Author(s):  
Subrata Deb ◽  
Steven Pham ◽  
Dong-Sheng Ming ◽  
Mei Chin ◽  
Hans Adomat ◽  
...  

Castration-resistant prostate tumors acquire the independent capacity to generate androgens by upregulating steroidogenic enzymes or using steroid precursors produced by the adrenal glands for continued growth and sustainability. The formation of steroids was measured by liquid chromatography-mass spectrometry in LNCaP and 22Rv1 prostate cancer cells, and in human prostate tissues, following incubation with steroid precursors (22-OH-cholesterol, pregnenolone, 17-OH-pregnenolone, progesterone, 17-OH-progesterone). Pregnenolone, progesterone, 17-OH-pregnenolone, and 17-OH-progesterone increased C21 steroid (5-pregnan-3,20-dione, 5-pregnan-3,17-diol-20-one, 5-pregnan-3-ol-20-one) formation in the backdoor pathway, and demonstrated a trend of stimulating dihydroepiandrosterone or its precursors in the backdoor pathway in LNCaP and 22Rv1 cells. The precursors differentially affected steroidogenic enzyme messenger RNA (mRNA) expressions in the cell lines. The steroidogenesis following incubation of human prostate tissue with 17-OH-pregnenolone and progesterone produced trends similar to those observed in cell lines. Interestingly, the formation of C21 steroids from classical pathway was not stimulated but backdoor pathway steroids (e.g., 5-pregnan-3,20-dione, 5-pregnan-3-ol-20-one) were elevated following incubations with prostate tissues. Overall, C21 steroids were predominantly formed in the classical as well as backdoor pathways, and steroid precursors induced a diversion of steroidogenesis to the backdoor pathway in both cell lines and human prostate tissue, and influenced adaptive steroidogenesis to form C21 steroids.

2009 ◽  
Vol 46 (2) ◽  
pp. 123-130
Author(s):  
Camila B. Piantino ◽  
Juliana M. Sousa-Canavez ◽  
Marta Bellodi-Privato ◽  
Miguel Srougi ◽  
Luiz Heraldo Camara-Lopes ◽  
...  

2019 ◽  
Vol 11 ◽  
pp. 175628721985230 ◽  
Author(s):  
Matthijs J. Scheltema ◽  
Tim J. O’Brien ◽  
Willemien van den Bos ◽  
Daniel M. de Bruin ◽  
Rafael V. Davalos ◽  
...  

Background: At present, it is not possible to predict the ablation zone volume following irreversible electroporation (IRE) for prostate cancer (PCa). This study aimed to determine the necessary electrical field threshold to ablate human prostate tissue in vivo with IRE. Methods: In this prospective multicenter trial, patients with localized PCa were treated with IRE 4 weeks before their scheduled radical prostatectomy. In 13 patients, numerical models of the electrical field were generated and compared with the ablation zone volume on whole-mount pathology and T2-weighted magnetic resonance imaging (MRI) sequences. Volume-generating software was used to calculate the ablation zone volumes on histology and MRI. The electric field threshold to ablate prostate tissue was determined for each patient. Results: A total of 13 patients were included for histological and simulation analysis. The median electrical field threshold was 550 V/cm (interquartile range 383–750 V/cm) for the software-generated histology volumes. The median electrical field threshold was 500 V/cm (interquartile range 386–580 V/cm) when the ablation zone volumes were used from the follow-up MRI. Conclusions: The electrical field threshold to ablate human prostate tissue in vivo was determined using whole-mount pathology and MRI. These thresholds may be used to develop treatment planning or monitoring software for IRE prostate ablation; however, further optimization of simulation methods are required to decrease the variance that was observed between patients.


The Prostate ◽  
1998 ◽  
Vol 34 (3) ◽  
pp. 155-161 ◽  
Author(s):  
Guan Wu ◽  
Hans Lilja ◽  
Abraham T.K. Cockett ◽  
Sten Gershagen

2021 ◽  
Vol 7 (2) ◽  
pp. 025017
Author(s):  
Olof A Lindahl ◽  
Tomas Bäcklund ◽  
Kerstin Ramser ◽  
Per Liv ◽  
Börje Ljungberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document