scholarly journals The Antiviral Agent Cidofovir Induces DNA Damage and Mitotic Catastrophe in HPV-Positive and -Negative Head and Neck Squamous Cell Carcinomas In Vitro

Cancers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 919 ◽  
Author(s):  
Femke Verhees ◽  
Dion Legemaate ◽  
Imke Demers ◽  
Robin Jacobs ◽  
Wisse Evert Haakma ◽  
...  

Cidofovir (CDV) is an antiviral agent with antiproliferative properties. The aim of our study was to investigate the efficacy of CDV in HPV-positive and -negative head and neck squamous cell carcinoma (HNSCC) cell lines and whether it is caused by a difference in response to DNA damage. Upon CDV treatment of HNSCC and normal oral keratinocyte cell lines, we carried out MTT analysis (cell viability), flow cytometry (cell cycle analysis), (immuno) fluorescence and western blotting (DNA double strand breaks, DNA damage response, apoptosis and mitotic catastrophe). The growth of the cell lines was inhibited by CDV treatment and resulted in γ-H2AX accumulation and upregulation of DNA repair proteins. CDV did not activate apoptosis but induced S- and G2/M phase arrest. Phospho-Aurora Kinase immunostaining showed a decrease in the amount of mitoses but an increase in aberrant mitoses suggesting mitotic catastrophe. In conclusion, CDV inhibits cell growth in HPV-positive and -negative HNSCC cell lines and was more profound in the HPV-positive cell lines. CDV treated cells show accumulation of DNA DSBs and DNA damage response activation, but apoptosis does not seem to occur. Rather our data indicate the occurrence of mitotic catastrophe.

Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3717
Author(s):  
Marieke Bamps ◽  
Rüveyda Dok ◽  
Sandra Nuyts

Radioresistance is a major cause of recurrences and radiotherapy (RT) failure in head and neck squamous cell carcinoma (HNSCC). DNA damage response (DDR) is known to be important for RT response, but its role in radioresistance is not fully understood. Here, we assessed the role of DDR in the radioresistance process of HNSCC by generating radioresistant clones from both HPV-positive SCC154 and HPV-negative SCC61 cells. We show that fractionated RT decreased RT response of HPV-positive and HPV-negative radioresistant clones in vitro and in vivo. Moreover, HPV-positive and HPV-negative radioresistant clones were characterized by differential DDR response. HPV-positive radioresistant clones showed less residual double-strand break damage and increased G2/M arrest recovery after RT, indicating an acquisition of increased DDR kinetics. In contrast, HPV-negative radioresistant clones showed less micronucleated cells after RT and increased survival upon checkpoint inhibition, indicating an increased replicative capacity. Inhibiting key factors of DDR in combination with RT rescued the radioresistant phenotype of both HPV-positive and HPV-negative radioresistant clones. Altogether, our results not only highlight the importance of DDR response in the radioresistance process of HPV-positive and HPV-negative HNSCC, but also provide possibilities for new therapies for HNSCC patients in recurrent settings.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2760-2760
Author(s):  
Monica Pallis ◽  
Dotun Ojo ◽  
Jaineeta Richardson ◽  
John Ronan ◽  
Malcolm Stevens ◽  
...  

Abstract Abstract 2760 Poster Board II-736 The quadruplex ligand RHPS4 is the lead compound in a drug discovery program at the University of Nottingham. It has been shown to bind to telomeres and inhibit telomerase, and subsequently induces growth arrest in progenitor cells from cancer cell lines whilst sparing normal haematopoietic progenitor cells. We explored its in vitro effects in AML cells, which are reported generally to have considerably shorter telomeres than normal CD34+ cells. AML cell lines were grown for 21 days in suspension culture. Primary samples were cultured for 14 days in semi-solid medium. Telomere length was measured by Southern blotting. γH2A.X was used to identify a DNA damage response, and cell viability was measured flow cytometrically with 7-amino actinomycin D. As reported in other tumour cell types, sensitivity to RHPS4 was found to be greatest in those AML cells with the shortest telomeres. In the OCI-AML3 cell line 0.3 μM RHPS4 inhibited cell growth by 50% in a 21 day clonogenic assay, accompanied by shortening of telomeres from 2.6 Kb to <1 Kb. Molm 13 cells (initial telomere length 3.2kB) also underwent telomere shortening in the presence of 0.3 μM RHPS4 (2.8Kb), whereas TF1a and U937 (both with initial telomere lengths approximately 6.5 kB) were insensitive at that concentration. After 6 days at 0.3 μM, RHPS4 was cytostatic, but at higher concentrations (1 μM) the drug was found to induce a substantial DNA damage response and loss of viability to OCI-AML3 cells. Moreover 0.3 μM RHPS4 enhanced the γH2A.X expression and cell death induced by the chemotherapy drug daunorubicin in these cells. Using 14 day clonogenic assays in primary AML samples (n=6), we found that the IC50 for RHPS4 alone was 0.7 μM. However, in the presence of 0.3 μM RHPS4, the median IC50 to daunorubicin was reduced from 19 nM to 5.5 nM. In conclusion we have determined that RHPS4 has telomere-shortening, cytostatic, cytotoxic and chemosensitising properties in AML cells. Disclosures: Stevens: Pharminox Ltd: director and shareholder of Pharminox Ltd which has a financial interest in RHPS4.


2021 ◽  
Vol 11 ◽  
Author(s):  
Sebastian Zahnreich ◽  
Senayit Gebrekidan ◽  
Gabriele Multhoff ◽  
Peter Vaupel ◽  
Heinz Schmidberger ◽  
...  

Abundance and signaling of the epidermal growth factor receptor (EGFR) and programmed cell death protein ligand 1 (PD-L1) in head and neck squamous cell carcinoma (HNSCC) are not only genetically determined but are also subject to the traits of the tumor microenvironment, which has hitherto not been clarified completely. We investigated the impact of hypoxia on the EGFR system and on PD-L1 in six HPV negative HNSCC cell lines in vitro and in FaDu xenografts in vivo. Protein levels of EGFR, AKT, pAKT, ERK1/2, pERK1/2, CA IX, cleaved PARP (apoptosis), LC3B (autophagy), and PD-L1 were quantified by western blot after oxygen deprivation or CoCl2, staurosporine, and erlotinib treatment. In FaDu xenograft tumors the expression of EGFR, CA IX andCD34 staining were analyzed. Reduced oxygen supply strongly downregulated EGFR protein levels and signaling in FaDu cells in vitro and in vivo, and a transient downregulation of EGFR signaling was found in three other HNSCC cell lines. PD-L1 was affected by oxygen deprivation in only one HNSCC cell line showing increased protein amounts. The results of this study indicate a significant impact of the traits of the tumor microenvironment on crucial molecular targets of cancer therapies with high clinical relevance for therapy resistance and response in HNSCC.


Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1971 ◽  
Author(s):  
Eva-Leonne Göttgens ◽  
Corina NAM van den Heuvel ◽  
Monique C de Jong ◽  
Johannes HAM Kaanders ◽  
William PJ Leenders ◽  
...  

Radiotherapy is an important treatment modality of head and neck squamous cell carcinomas (HNSCC). Multiple links have been described between the metabolic activity of tumors and their clinical outcome. Here we test the hypothesis that metabolic features determine radiosensitivity, explaining the relationship between metabolism and clinical outcome. Radiosensitivity of 14 human HNSCC cell lines was determined using colony forming assays and the expression profile of approximately 200 metabolic and cancer-related genes was generated using targeted RNA sequencing by single molecule molecular inversion probes. Results: Correlation between radiosensitivity data and expression profiles yielded 18 genes associated with radiosensitivity or radioresistance, of which adenosine triphosphate (ATP) citrate lyase (ACLY) was of particular interest. Pharmacological inhibition of ACLY caused an impairment of DNA damage repair, specifically homologous recombination, and lead to radiosensitization in HNSCC cell lines. Examination of a The Cancer Genome Atlas (TCGA) cohort of HNSCC patients revealed that high expression of ACLY was predictive for radiotherapy failure, as it was only associated with poor overall survival in patients who received radiotherapy (hazard ratio of 2.00, 95% CI: 1.12–3.55; p = 0.0184). These data were further validated in an independent cohort of HNSCC patients treated with chemoradiation. Furthermore, patients with poor locoregional control after radiotherapy have significantly higher nuclear ACLY protein levels. Together, we here show that ACLY affects DNA damage repair, and is a predictive factor for radiotherapy outcome in HNSCC.


Sign in / Sign up

Export Citation Format

Share Document