scholarly journals A Novel JAK1 Mutant Breast Implant-Associated Anaplastic Large Cell Lymphoma Patient-Derived Xenograft Fostering Pre-Clinical Discoveries

Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1603 ◽  
Author(s):  
Danilo Fiore ◽  
Luca Vincenzo Cappelli ◽  
Paul Zumbo ◽  
Jude M. Phillips ◽  
Zhaoqi Liu ◽  
...  

Breast implant-associated lymphoma (BIA-ALCL) has recently been recognized as an independent peripheral T-cell lymphoma (PTCL) entity. In this study, we generated the first BIA-ALCL patient-derived tumor xenograft (PDTX) model (IL89) and a matching continuous cell line (IL89_CL#3488) to discover potential vulnerabilities and druggable targets. We characterized IL89 and IL89_CL#3488, both phenotypically and genotypically, and demonstrated that they closely resemble the matching human primary lymphoma. The tumor content underwent significant enrichment along passages, as confirmed by the increased variant allele frequency (VAF) of mutations. Known aberrations (JAK1 and KMT2C) were identified, together with novel hits, including PDGFB, PDGFRA, and SETBP1. A deep sequencing approach allowed the detection of mutations below the Whole Exome Sequencing (WES) sensitivity threshold, including JAK1G1097D, in the primary sample. RNA sequencing confirmed the expression of a signature of differentially expressed genes in BIA-ALCL. Next, we tested IL89’s sensitivity to the JAK inhibitor ruxolitinib and observed a potent anti-tumor effect, both in vitro and in vivo. We also implemented a high-throughput drug screening approach to identify compounds associated with increased responses in the presence of ruxolitinib. In conclusion, these new IL89 BIA-ALCL models closely recapitulate the primary correspondent lymphoma and represent an informative platform for dissecting the molecular features of BIA-ALCL and performing pre-clinical drug discovery studies, fostering the development of new precision medicine approaches.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Huan-Chang Liang ◽  
Mariantonia Costanza ◽  
Nicole Prutsch ◽  
Mark W. Zimmerman ◽  
Elisabeth Gurnhofer ◽  
...  

AbstractAnaplastic large cell lymphoma (ALCL), an aggressive CD30-positive T-cell lymphoma, comprises systemic anaplastic lymphoma kinase (ALK)-positive, and ALK-negative, primary cutaneous and breast implant-associated ALCL. Prognosis of some ALCL subgroups is still unsatisfactory, and already in second line effective treatment options are lacking. To identify genes defining ALCL cell state and dependencies, we here characterize super-enhancer regions by genome-wide H3K27ac ChIP-seq. In addition to known ALCL key regulators, the AP-1-member BATF3 and IL-2 receptor (IL2R)-components are among the top hits. Specific and high-level IL2R expression in ALCL correlates with BATF3 expression. Confirming a regulatory link, IL-2R-expression decreases following BATF3 knockout, and BATF3 is recruited to IL2R regulatory regions. Functionally, IL-2, IL-15 and Neo-2/15, a hyper-stable IL-2/IL-15 mimic, accelerate ALCL growth and activate STAT1, STAT5 and ERK1/2. In line, strong IL-2Rα-expression in ALCL patients is linked to more aggressive clinical presentation. Finally, an IL-2Rα-targeting antibody-drug conjugate efficiently kills ALCL cells in vitro and in vivo. Our results highlight the importance of the BATF3/IL-2R-module for ALCL biology and identify IL-2Rα-targeting as a promising treatment strategy for ALCL.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2-2 ◽  
Author(s):  
Masumichi Saito ◽  
Ryan T. Phan ◽  
Herbert C. Morse ◽  
Laura Pasqualucci ◽  
Riccardo Dalla-Favera

Abstract Deregulated expression of the proto-oncogenes BCL6 and c-MYC caused by chromosomal translocation or somatic hypermutation is common in non-Hodgkin B cell lymphoma derived from germinal center (GC) B cells, including diffuse large cell lymphoma (DLBCL) and Burkitt lymphoma (BL). Normal GC B cells express BCL6, whereas, surprisingly, they do not express c-MYC, suggesting that the expression of this oncogene in BL and DLBCL (20% of cases) is ectopic (Klein, U. et al. Proc Natl Acad Sci U S A100, 2639–2644, 2003). Here we report that c-MYC is absent in proliferating GC B cells because it is transcriptionally suppressed by BCL6, as demonstrated by the presence of specific BCL6 binding sites in the c-MYC promoter region and by chromatin immunoprecipitation experiments showing that BCL6 is bound to these sites in vivo. Thus, c-MYC escapes BCL6-mediated suppression in lymphoma leading to the co-expression of the two transcription factors, an event never observed in immunohistochemical and gene expression profile analysis of normal GC B cells. Surprisingly, co-immunoprecipitation experiments and in vitro binding experiments indicate that, when co-expressed, BCL6 and c-MYC are physically bound in a novel complex detectable in DLBCL and BL cell lines as well as in primary lymphoma cases. The formation of the BCL6/c-MYC complex has several significant functional consequences on the function of both c-MYC and BCL6: 1) a two fold, BCL6-binding dependent increase in c-MYC half-life, an event that has been shown to contribute to its oncogenic activation; 2) a synergistic increase in the ability of both BCL6 and c-MYC to suppress MIZ1-activated transcription of the p21CIP cell cycle arrest gene; 3) MYC-dependent inhibition of BCL6 acetylation by p300, an event that physiologically inactivates BCL6 via c-MYC-mediated recruitment of HDAC. Notably, the pathologic co-expression of c-MYC and BCL6 was shown to have pathologic consequences in vivo, since double transgenic BCL6/c-MYC mice display accelerated lymphoma development and the appearance of a novel GC-derived tumor phenotype not recognizable in single transgenic animals and containing the pathologic c-MYC/BCL6 complex. Thus, the pathologic co-expression and illegitimate physical interaction of BCL6 and c-MYC leads to an increase in the constitutive activity of both oncogenes. These results identify a novel mechanism of oncogenic function for BCL6 and c-MYC and a novel tumor-specific protein complex of potential therapeutic interest.


Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4422
Author(s):  
Giulia Arosio ◽  
Geeta G. Sharma ◽  
Matteo Villa ◽  
Mario Mauri ◽  
Ilaria Crespiatico ◽  
...  

Anaplastic lymphoma kinase-positive (ALK+) anaplastic large-cell lymphoma (ALCL) is a subtype of non-Hodgkin lymphoma characterized by expression of the oncogenic NPM/ALK fusion protein. When resistant or relapsed to front-line chemotherapy, ALK+ ALCL prognosis is very poor. In these patients, the ALK inhibitor crizotinib achieves high response rates, however 30–40% of them develop further resistance to crizotinib monotherapy, indicating that new therapeutic approaches are needed in this population. We here investigated the efficacy of upfront rational drug combinations to prevent the rise of resistant ALCL, in vitro and in vivo. Different combinations of crizotinib with CHOP chemotherapy, decitabine and trametinib, or with second-generation ALK inhibitors, were investigated. We found that in most cases combined treatments completely suppressed the emergence of resistant cells and were more effective than single drugs in the long-term control of lymphoma cells expansion, by inducing deeper inhibition of oncogenic signaling and higher rates of apoptosis. Combinations showed strong synergism in different ALK-dependent cell lines and better tumor growth inhibition in mice. We propose that drug combinations that include an ALK inhibitor should be considered for first-line treatments in ALK+ ALCL.


Blood ◽  
1992 ◽  
Vol 80 (3) ◽  
pp. 738-743
Author(s):  
N Stiernholm ◽  
B Kuzniar ◽  
NL Berinstein

Several genetic mechanisms have been shown to diversity the expressed antibody repertoire of committed B lymphocytes. These include somatic hypermutation, V gene replacement, and ongoing gene rearrangement. These mechanisms may be operational at discrete points in the B-cell differentiation pathway and may generate idiotypic diversity in various malignant B-cell tumors. Hypermutation of the Ig variable region has been shown to occur in follicular lymphoma, but not in pre-B cell acute lymphoblastic leukemia, Burkitt's lymphoma, chronic lymphocytic leukemia, or myeloma. To study hypermutation in a large cell lymphoma, we use a polymerase chain reaction-based approach, employing consensus VH and JH primers, to clone and sequence rearranged Ig heavy chain variable regions. Neither tumor cells immortalized in rescue fusions nor idiotypic variants of a tumor-derived cell line generated through ongoing lambda light chain gene rearrangements show any significant number of variable region mutations. Thus, at the in vivo stage of B- cell differentiation from which this large cell lymphoma arose, Ig variable region hypermutation was not occurring, nor did it occur during propagation in vitro of these tumor cells. Thus, the window of hypermutation in malignant B-cell tumors is more precisely defined, which may have clinical implications for diagnostic and therapeutic approaches directed at the Ig variable region.


Cancers ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 107 ◽  
Author(s):  
Ivonne Montes-Mojarro ◽  
Julia Steinhilber ◽  
Irina Bonzheim ◽  
Leticia Quintanilla-Martinez ◽  
Falko Fend

Anaplastic large cell lymphoma (ALCL) represents a group of malignant T-cell lymphoproliferations that share morphological and immunophenotypical features, namely strong CD30 expression and variable loss of T-cell markers, but differ in clinical presentation and prognosis. The recognition of anaplastic lymphoma kinase (ALK) fusion proteins as a result of chromosomal translocations or inversions was the starting point for the distinction of different subgroups of ALCL. According to their distinct clinical settings and molecular findings, the 2016 revised World Health Organization (WHO) classification recognizes four different entities: systemic ALK-positive ALCL (ALK+ ALCL), systemic ALK-negative ALCL (ALK− ALCL), primary cutaneous ALCL (pC-ALCL), and breast implant-associated ALCL (BI-ALCL), the latter included as a provisional entity. ALK is rearranged in approximately 80% of systemic ALCL cases with one of its partner genes, most commonly NPM1, and is associated with favorable prognosis, whereas systemic ALK− ALCL shows heterogeneous clinical, phenotypical, and genetic features, underlining the different oncogenesis between these two entities. Recognition of the pathological spectrum of ALCL is crucial to understand its pathogenesis and its boundaries with other entities. In this review, we will focus on the morphological, immunophenotypical, and molecular features of systemic ALK+ and ALK− ALCL. In addition, BI-ALCL will be discussed.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1483-1483 ◽  
Author(s):  
Randall M. Rossi ◽  
Alicia D. Henn ◽  
Rebecca Conkling ◽  
Monica L. Guzman ◽  
Timothy Bushnell ◽  
...  

Abstract Activation of PKC contributes to tumor cell survival and proliferation and has been implicated in the pathogenesis of human B cell lymphomas. Specifically, PKCβ activation is increased in tumor cells from patients with poor prognosis diffuse large cell lymphoma (DLCL), suggesting that PKCβ may be a target for therapeutic intervention. In this study we tested the PKCβ inhibitor, Enzastaurin (LY317615), using both cell culture and xenograft assays, on a panel of eight DLCL lines (OCI-Ly3, OCI-Ly7, OCI-Ly10, OCI-Ly19, SUDHL-4, SUDHL-6, Farage, and Toledo). In suspension culture, Enzastaurin was cytotoxic to all lines tested, with an average IC50 at 48 hours of 2.0 micromolar (range 0.5–4.0 micromolar). Molecular analyses showed that Enzastaurin treatment inhibited phosphorylation of GSK3β, a potential pharmacodynamic marker of Enzastaurin activity. Subsequent studies were performed using two subclones of the DLCL lines OCI-Ly10 and OCI-ly19, which respectively represent the ABC (activated B cell) and GC (germinal center) molecular subclasses of DLCL. Each line was engineered to express luciferase, which permits real time in vivo imaging. Upon subcutaneous transplantation into immune deficient NOD/SCID mice, both lines formed reproducible tumors. Treatment with Enzastaurin (75mg/kg, b.i.d. oral gavage) was initiated during the first 1–2 weeks post-transplant, before palpable tumors were evident, and was continued for 14 consecutive days. The Enzastaurin treatment was well tolerated, with the only overt side effect being moderate weight loss. At the end of therapy, vehicle control treated tumors had become palpable and progressed to volumes of 40–60 cubic millimeters. In contrast, Enzastaurin treated tumors (both OCI-Ly10 and OCI-Ly19) showed no observable progression, remaining detectable by luciferase imaging, but non-palpable. Collectively, these data indicate the Enzastaurin can induce death of human DLCL lines in vitro and is at least cytostatic to human DLCL in vivo.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 769-769
Author(s):  
Elena Beltran ◽  
Vicente Fresquet ◽  
Javier Martinez-Useros ◽  
Jose A. Richter-Larrea ◽  
Ainara Sagardoy ◽  
...  

Abstract Abstract 769 Despite the many and diverse therapeutic approaches used to treat patients with mantle cell lymphoma (MCL), it remains an incurable disease. Recently, attention has turned into novel therapies targeting MCL-specific oncogenic pathways important for the growth and maintenance of the transformed phenotype. The chromosomal translocation t(11;14)(q13;q32) leading to cyclin-D1 over-expression is the hallmark of MCL. Constitute cyclin-D1 activation in B-lymphocytes maintains retinoblastoma protein in a phosphorylated state and promotes cell cycling, thus initiating the tumorigenesis process. Cyclin-D1 has been postulated as a putative target for therapeutic intervention, however its evaluation has been hampered by the incomplete understanding of the mechanism underlying this cyclin oncogenic function and by the lack of valid MCL models. To investigate these issues, we developed a combined cellular-genomics screening whereby responses to known cytotoxic compounds targeting cancer-related molecular pathways were correlated with genomic, gene expression and proteomic profiles of human MCL cells. Results showed that cyclin-D1 silencing had minimal antitumoral effects but significantly increased the therapeutic efficacy of several compounds, especially the BH3 mimetics that inhibited anti-apoptotic protein BCL-2. To further evaluate this finding we generated a MCL mouse model by transducing a tetracycline-regulatable cyclin-D1-expressing vector in murine pro-B cells, which allowed modulating cyclin-D1 expression levels. These mice generated lymphomas recapitulating most of the cellular, histopathological and molecular features of human MCL. Similar to the previous in vitro findings, cyclin-D1 inhibition in this model did not induce lymphoma regression, but sensitized cells to apoptosis. Analysis of the mechanisms underlying this therapeutic synergy identified a novel role for cyclin-D1 as a pro-survival molecule. Specifically, cyclin-D1 sequestrated the pro-apoptotic effector protein BAX in MCL cells, thereby favoring BCL2 anti-apoptotic function. Accordingly, therapeutic cyclin-D1 inactivation released BAX, thus sensitizing cells to apoptosis and inducing lymphoma regression. Interestingly, pharmacological blockade in vivo of cyclin-D1 with Roscovitine synergistically cooperated with the BH3 mimetic ABT-737 to effectively inhibit MCL tumor growth. In summary, our study reveals a novel role for cyclin-D1 in deregulating apoptosis in MCL cells and highlights the potential benefit of cyclin-D1 targeting, thus providing the rationale for the clinical evaluation of drugs targeting cell proliferation and survival pathways in MCL. Disclosures: Siebert: Abbott: Honoraria.


Blood ◽  
1992 ◽  
Vol 80 (3) ◽  
pp. 738-743 ◽  
Author(s):  
N Stiernholm ◽  
B Kuzniar ◽  
NL Berinstein

Abstract Several genetic mechanisms have been shown to diversity the expressed antibody repertoire of committed B lymphocytes. These include somatic hypermutation, V gene replacement, and ongoing gene rearrangement. These mechanisms may be operational at discrete points in the B-cell differentiation pathway and may generate idiotypic diversity in various malignant B-cell tumors. Hypermutation of the Ig variable region has been shown to occur in follicular lymphoma, but not in pre-B cell acute lymphoblastic leukemia, Burkitt's lymphoma, chronic lymphocytic leukemia, or myeloma. To study hypermutation in a large cell lymphoma, we use a polymerase chain reaction-based approach, employing consensus VH and JH primers, to clone and sequence rearranged Ig heavy chain variable regions. Neither tumor cells immortalized in rescue fusions nor idiotypic variants of a tumor-derived cell line generated through ongoing lambda light chain gene rearrangements show any significant number of variable region mutations. Thus, at the in vivo stage of B- cell differentiation from which this large cell lymphoma arose, Ig variable region hypermutation was not occurring, nor did it occur during propagation in vitro of these tumor cells. Thus, the window of hypermutation in malignant B-cell tumors is more precisely defined, which may have clinical implications for diagnostic and therapeutic approaches directed at the Ig variable region.


Blood ◽  
1995 ◽  
Vol 85 (8) ◽  
pp. 2139-2146 ◽  
Author(s):  
L Pasqualucci ◽  
M Wasik ◽  
BA Teicher ◽  
L Flenghi ◽  
A Bolognesi ◽  
...  

To develop a novel adjunctive therapy for CD30 (Ki-1)+ anaplastic large-cell lymphoma (ALCL), we investigated in preclinical studies the antitumor activity of an immunotoxin (IT) constructed by coupling the plant ribosome-inactivating protein saporin (SO6) to the monoclonal antibody (MoAb) Ber-H2 that is directed against the CD30 molecule, a new member of the tumor necrosis factor receptor (TNFR) super-family. The activity of Ber-H2/SO6 IT was tested both in vitro against the CD30+ ALCL-derived cell line JB6 and in vivo using our severe combined immunodeficiency disease (SCID) mouse model of human xenografted CD30+ ALCL. In vitro, the Ber-H2/SO6 IT was selectively and highly toxic to the JB6 cell line [50% inhibiting concentration (IC50), 3.23 x 10(-12) mol/L as SO6]. In vivo, a 3-day treatment with nontoxic doses of Ber-H2/SO6 (50% of LD50) induced lasting complete remissions (CR) in 80% of mice when started 24 hours after tumor transplantation. In contrast, injection of the IT at later stages of tumor growth (mice bearing subcutaneous tumors of 40- to 60-mm3 volume), induced CR in only 6 of 21 (approximately 30%) mice and significantly delayed tumor growth rate (P < .01). This finding suggests that maximum effect of the anti-CD30 IT is observed when tumor cell burden is small. Persistent tumors from IT-treated mice consisted of CD30+ cells, thus excluding the possibility that selection of CD30-negative mutant clones during IT therapy was responsible for resistance to treatment. We conclude that Ber-H2/SO6 IT is an effective agent against CD30+ ALCL growing in SCID mice, suggesting its possible role as adjuvant therapy in patients with CD30+ ALCL refractory to standard treatments.


Blood ◽  
2003 ◽  
Vol 101 (3) ◽  
pp. 949-954 ◽  
Author(s):  
Olivier Manches ◽  
Gabrielle Lui ◽  
Laurence Chaperot ◽  
Rémy Gressin ◽  
Jean-Paul Molens ◽  
...  

Abstract To assess the sensitivity of primary non-Hodgkin lymphoma cells to rituximab-mediated cytotoxicity, we compared the potency of several rituximab-mediated killing mechanisms on fresh lymphoma cells. All lymphoma cells tested were equally sensitive to antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-mediated phagocytosis of tumor cells, and rituximab-induced apoptosis. However, they were differentially lysed by complement-dependent cytotoxicity (CDC). We found that taking into account both CD20 and complement regulatory protein expression on tumor cells could predict CDC sensitivity in vitro. Importantly, the sensitivity of lymphoma cells to CDC was consistent with the reported different clinical response rates of lymphomas: rituximab induced high CDC killing of follicular lymphoma cells, whereas mantle cell lymphoma and diffuse large cell lymphoma cells were moderately sensible to CDC, and small lymphocytic lymphoma cells were almost all resistant. We propose that CDC is a determinant mechanism of rituximab-induced killing in vivo. Poor sensitivity to CDC in vitro might predict a poor clinical response, whereas high sensitivity to CDC would only indicate a likelihood of response to rituximab treatment.


Sign in / Sign up

Export Citation Format

Share Document