scholarly journals The Impact of Next Generation Sequencing in Cancer Research

Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2928
Author(s):  
Katia Nones ◽  
Ann-Marie Patch

Next generation sequencing (NGS) describes the technical revolution that enabled massively parallel sequencing of fragmented nucleic acids, thus making possible our current genomic understanding of cancers [...]

2009 ◽  
Vol 55 (4) ◽  
pp. 641-658 ◽  
Author(s):  
Karl V Voelkerding ◽  
Shale A Dames ◽  
Jacob D Durtschi

Abstract Background: For the past 30 years, the Sanger method has been the dominant approach and gold standard for DNA sequencing. The commercial launch of the first massively parallel pyrosequencing platform in 2005 ushered in the new era of high-throughput genomic analysis now referred to as next-generation sequencing (NGS). Content: This review describes fundamental principles of commercially available NGS platforms. Although the platforms differ in their engineering configurations and sequencing chemistries, they share a technical paradigm in that sequencing of spatially separated, clonally amplified DNA templates or single DNA molecules is performed in a flow cell in a massively parallel manner. Through iterative cycles of polymerase-mediated nucleotide extensions or, in one approach, through successive oligonucleotide ligations, sequence outputs in the range of hundreds of megabases to gigabases are now obtained routinely. Highlighted in this review are the impact of NGS on basic research, bioinformatics considerations, and translation of this technology into clinical diagnostics. Also presented is a view into future technologies, including real-time single-molecule DNA sequencing and nanopore-based sequencing. Summary: In the relatively short time frame since 2005, NGS has fundamentally altered genomics research and allowed investigators to conduct experiments that were previously not technically feasible or affordable. The various technologies that constitute this new paradigm continue to evolve, and further improvements in technology robustness and process streamlining will pave the path for translation into clinical diagnostics.


2010 ◽  
Vol 76 (12) ◽  
pp. 3863-3868 ◽  
Author(s):  
J. Kirk Harris ◽  
Jason W. Sahl ◽  
Todd A. Castoe ◽  
Brandie D. Wagner ◽  
David D. Pollock ◽  
...  

ABSTRACT Constructing mixtures of tagged or bar-coded DNAs for sequencing is an important requirement for the efficient use of next-generation sequencers in applications where limited sequence data are required per sample. There are many applications in which next-generation sequencing can be used effectively to sequence large mixed samples; an example is the characterization of microbial communities where ≤1,000 sequences per samples are adequate to address research questions. Thus, it is possible to examine hundreds to thousands of samples per run on massively parallel next-generation sequencers. However, the cost savings for efficient utilization of sequence capacity is realized only if the production and management costs associated with construction of multiplex pools are also scalable. One critical step in multiplex pool construction is the normalization process, whereby equimolar amounts of each amplicon are mixed. Here we compare three approaches (spectroscopy, size-restricted spectroscopy, and quantitative binding) for normalization of large, multiplex amplicon pools for performance and efficiency. We found that the quantitative binding approach was superior and represents an efficient scalable process for construction of very large, multiplex pools with hundreds and perhaps thousands of individual amplicons included. We demonstrate the increased sequence diversity identified with higher throughput. Massively parallel sequencing can dramatically accelerate microbial ecology studies by allowing appropriate replication of sequence acquisition to account for temporal and spatial variations. Further, population studies to examine genetic variation, which require even lower levels of sequencing, should be possible where thousands of individual bar-coded amplicons are examined in parallel.


2021 ◽  
Author(s):  
Sabine Hazan ◽  
Sheldon Jordan

Abstract Background: Reports have been surfacing surrounding CNS-associated symptoms in individuals affected by coronavirus disease 19 (COVID-19). Tourette syndrome is a neuropsychiatric disorder with usual onset in childhood. Gut microbiota can affect central physiology and function via the microbiota-gut-brain axis. The authors of this case report describe Tourette’s-like symptoms in a patient resulting from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection disrupting gut microbiota. Case Presentation: This case involves a 16-year-old female that developed acute onset Tourette’s-like symptoms along with neuropsychiatric symptoms after exposure to and infection from SARS-CoV-2. The patient had negative nasopharyngeal (NP) real-time reverse transcription-PCR (RT-PCR) tests for SARS-CoV-2 on five occasions from August of 2020 through June of 2021. The patient’s symptoms continued to worsen over the next six months until next-generation sequencing (NGS) revealed SARS-CoV-2 in her stool. Her treatment was adjusted as NGS revealed SARS-CoV-2 in her stool. Repair of the gastrointestinal microbiota, treatment with nutraceutical and pharmaceutical agents, as well as alterations in her surroundings resulted in dramatic improvement in the microbiome and a significant reduction of symptoms.Discussion: The use of (RT-PCR) testing to determine the presence or absence of SARS-CoV-2 may be inadequate and inaccurate for individuals that have been exposed to the virus. In addition, the impact of SARS-CoV-2 infection of the GI tract may cause significant havoc in the gut microbiota. Additional testing, eradication of infectious agents, as well as restoration of the gut microbiome are needed to effectively manage and treat this condition. The patient’s symptoms worsened over the next six months until next-generation sequencing (NGS) revealed SARS-CoV-2 in her stool and her treatment was adjusted. Treatment with nutraceuticals and alterations in her surroundings was followed by a more normal microbiome and a dramatic reduction in symptoms.


2015 ◽  
Vol 97 ◽  
Author(s):  
TONY SHEN ◽  
ARIEL LEE ◽  
CAROL SHEN ◽  
C.JIMMY LIN

SummaryThere are an estimated 6000–8000 rare Mendelian diseases that collectively affect 30 million individuals in the United States. The low incidence and prevalence of these diseases present significant challenges to improving diagnostics and treatments. Next-generation sequencing (NGS) technologies have revolutionized research of rare diseases. This article will first comment on the effectiveness of NGS through the lens of long-tailed economics. We then provide an overview of recent developments and challenges of NGS-based research on rare diseases. As the quality of NGS studies improve and the cost of sequencing decreases, NGS will continue to make a significant impact on the study of rare diseases moving forward.


2018 ◽  
Vol 29 ◽  
pp. vi14-vi15
Author(s):  
S. Coquerelle ◽  
M. Darlington ◽  
M. Michel ◽  
M. Durand ◽  
J. Gutton ◽  
...  

Author(s):  
Afzal Hussain

Next-generation sequencing or massively parallel sequencing describe DNA sequencing, RNA sequencing, or methylation sequencing, which shows its great impact on the life sciences. The recent advances of these parallel sequencing for the generation of huge amounts of data in a very short period of time as well as reducing the computing cost for the same. It plays a major role in the gene expression profiling, chromosome counting, finding out the epigenetic changes, and enabling the future of personalized medicine. Here the authors describe the NGS technologies and its application as well as applying different tools such as TopHat, Bowtie, Cufflinks, Cuffmerge, Cuffdiff for analyzing the high throughput RNA sequencing (RNA-Seq) data.


Sign in / Sign up

Export Citation Format

Share Document