scholarly journals Size-Exclusion Chromatography as a Technique for the Investigation of Novel Extracellular Vesicles in Cancer

Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3156
Author(s):  
Daniel S. K. Liu ◽  
Flora M. Upton ◽  
Eleanor Rees ◽  
Christopher Limb ◽  
Long R. Jiao ◽  
...  

Cancer cells release extracellular vesicles, which are a rich target for biomarker discovery and provide a promising mechanism for liquid biopsy. Size-exclusion chromatography (SEC) is an increasingly popular technique, which has been rediscovered for the purposes of extracellular vesicle (EV) isolation and purification from diverse biofluids. A systematic review was undertaken to identify all papers that described size exclusion as their primary EV isolation method in cancer research. In all, 37 papers were identified and discussed, which showcases the breadth of applications in which EVs can be utilised, from proteomics, to RNA, and through to functionality. A range of different methods are highlighted, with Sepharose-based techniques predominating. EVs isolated using SEC are able to identify cancer cells, highlight active pathways in tumourigenesis, clinically distinguish cohorts, and remain functionally active for further experiments.

2019 ◽  
Vol 31 (1) ◽  
pp. 159
Author(s):  
K. C. Pavani ◽  
A. Hendrix ◽  
B. Leemans ◽  
A. Van Soom

In the absence of the maternal tract, pre-implantation bovine embryos cultured in group are able to promote their own development in vitro by releasing autocrine embryotropins. Recently we have identified extracellular vesicles (EV) among these embryotropins as one of the communication mechanisms among embryos. Extracellular vesicles are nano-sized (25-250nm), with a lipid bilayer, and are functionally active, since they contain proteins, lipids, and nucleic acids, including RNA and miRNA. However, one of the major challenges in isolating EV is an inadequate volume of medium conditioned by bovine embryo. As it requires larger volumes of conditioned medium to isolate EV, our study mainly focused on isolating high yields of functional EV from a minimal volume. There are 3 known isolation methods for EV: differential ultracentrifugation (DU), OptiPrep™ density gradient ultracentrifugation (ODGU), and size-exclusion chromatography (SEC). We have used these 3 protocols to determine the method that yielded the highest number of EV. We used routine in vitro maturation and fertilization methods, but for in vitro culture presumed zygotes were cultured until 8 days post-insemination (dpi) in medium (synthetic oviducal fluid supplemented with insulin, transferrin, selenium, and bovine serum albumin) that was ultracentrifuged to remove any possible contaminating EV. In vitro embryo culture took place in groups of 25 presumed zygotes in 50-mL drops, covered with mineral oil and incubated at 38°C in 5% CO2, 5% O2, and 90% N2. On 8 dpi, medium conditioned by bovine embryo was collected and pooled until 3mL. For each isolation method, 1mL of conditioned medium was used, and next, EV isolated from each isolation method were analysed with nanoparticle tracking, electron microscopy, and Western blot (CD9, Flotillin 1, and AGO 2). We observed higher concentrations (1.03×109 particles mL−1) of EV were isolated from the SEC compared with the other 2 methods (301.5×108 particles mL−1 and 64.5×108 particles mL−1 for DU and ODGU, respectively; P<0.05), whereas smaller size EV (20-50nm) were lost during the ultracentrifugation methods. Besides, it takes only 2h of time to perform size-exclusion chromatography for isolating EV, whereas it takes more than 1 day to perform ultracentrifugation methods. Therefore, we propose to use SEC for further downstream processing and sequencing of miRNA in isolated EV. We are currently focusing on optimizing an EV isolation protocol to extract EV from very low volumes of conditioned medium (less than 500 µL).


Small ◽  
2022 ◽  
pp. 2104470
Author(s):  
Sheng Yuan Leong ◽  
Hong Boon Ong ◽  
Hui Min Tay ◽  
Fang Kong ◽  
Megha Upadya ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marija Holcar ◽  
Jana Ferdin ◽  
Simona Sitar ◽  
Magda Tušek-Žnidarič ◽  
Vita Dolžan ◽  
...  

AbstractHuman plasma is a complex fluid, increasingly used for extracellular vesicle (EV) biomarker studies. Our aim was to find a simple EV-enrichment method for reliable quantification of EVs in plasma to be used as biomarker of disease. Plasma of ten healthy subjects was processed using sedimentation rate- (sucrose cushion ultracentrifugation—sUC) and size- (size exclusion chromatography—SEC) based methods. According to nanoparticle tracking analysis (NTA), asymmetrical flow field-flow fractionation coupled to detectors (AF4-UV-MALS), miRNA quantification, transmission electron microscopy and enzyme-linked immunosorbent assay, enrichment of EVs from plasma with sUC method lead to high purity of EVs in the samples. High nanoparticle concentrations after SEC resulted from substantial contamination with lipoproteins and other aggregates of EV-like sizes that importantly affect downstream EV quantification. Additionally, sUC EV-enrichment method linked to quantification with NTA or AF4-UV-MALS is repeatable, as the relative standard deviation of EV size measured in independently processed samples from the same plasma source was 5.4% and 2.1% when analyzed by NTA or AF4-UV-MALS, respectively. In conclusion, the sUC EV-enrichment method is compatible with reliable measurement of concentration and size of EVs from plasma and should in the future be tested on larger cohorts in relation to different diseases. This is one of the first studies using AF4-UV-MALS to quantify EVs in blood plasma, which opens new possible clinical utility for the technique.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Ana Gámez-Valero ◽  
Marta Monguió-Tortajada ◽  
Laura Carreras-Planella ◽  
Marcel·la Franquesa ◽  
Katrin Beyer ◽  
...  

2019 ◽  
Vol 76 (12) ◽  
pp. 2369-2382 ◽  
Author(s):  
Marta Monguió-Tortajada ◽  
Carolina Gálvez-Montón ◽  
Antoni Bayes-Genis ◽  
Santiago Roura ◽  
Francesc E. Borràs

2015 ◽  
Vol 4 (1) ◽  
pp. 27369 ◽  
Author(s):  
Inés Lozano-Ramos ◽  
Ioana Bancu ◽  
Anna Oliveira-Tercero ◽  
María Pilar Armengol ◽  
Armando Menezes-Neto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document