scholarly journals Clinical Feasibility of a High-Resolution Thermal Monitoring Sheet for Superficial Hyperthermia in Breast Cancer Patients

Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3644
Author(s):  
Akke Bakker ◽  
Remko Zweije ◽  
Henny Petra Kok ◽  
Merel Willemijn Kolff ◽  
H. J. G. Desiree van den Bongard ◽  
...  

Background: Accurate monitoring of skin surface temperatures is necessary to ensure treatment quality during superficial hyperthermia. A high-resolution thermal monitoring sheet (TMS) was developed to monitor the skin surface temperature distribution. The influence of the TMS on applicator performance was investigated, feasibility and ability to reliably monitor the temperature distribution were evaluated in a clinical study. Methods: Phantom experiments were performed to determine the influence of the TMS on power deposition patterns, applicator efficiency, and heat transfer of the water bolus for 434 and 915 MHz applicators. Clinical feasibility was evaluated in 10 women with locoregional recurrent breast cancer. Skin surface temperatures during consecutive treatments were monitored alternatingly with either standard Amsterdam UMC thermometry or TMS. Treatments were compared using (generalized) linear mixed models. Results: The TMS did not significantly affect power deposition patterns and applicator efficiency (1–2%), the reduced heat transfer of the water boluses (51–56%) could be compensated by adjusting the water bolus flow. Skin surface temperatures were monitored reliably, and no alteration of thermal toxicity was observed compared to standard Amsterdam UMC thermometry. Conclusion: Clinical application of the TMS is feasible. Power deposition patterns and applicator efficiency were not affected. Surface temperatures were monitored reliably.

2003 ◽  
Author(s):  
Devashish Shrivastava ◽  
Robert Roemer

Conduction shape factors are frequently used in a variety of heat transfer applications to evaluate heat transfer from one three-dimensional body to another three-dimensional body. Previous investigators have used conduction shape factors derived using the 2-D cross-section of the 3-D geometries for non-heating conditions as approximations to 3-D conduction shape factors with heating and no-heating present. This paper investigates the suitability of neglecting the axial conduction and power deposition in deriving expressions for conduction shape factors for the case of a single, cylindrical vessel imbedded concentrically in a cylindrical, uniformly heated tissue matrix. It is shown that 1) conduction shape factors are functions of the deposited power and the temperature distribution and 2) the magnitudes of conduction shape factors are affected significantly by axial conduction.


2020 ◽  
Vol 65 (17) ◽  
pp. 175021 ◽  
Author(s):  
Akke Bakker ◽  
Remko Zweije ◽  
Geertjan van Tienhoven ◽  
H Petra Kok ◽  
Jan Sijbrands ◽  
...  

2011 ◽  
Vol 675-677 ◽  
pp. 987-990
Author(s):  
Ling Tang ◽  
Xu Dong Wang ◽  
Hai Jing Zhao ◽  
Man Yao

In this paper, the flow, heat transfer and stress during solidification process of the machine tool bed weighed about 2.5ton that has been optimized by structural topologymethod, was calculated with ProCAST software, and the causes of the crack forming in the casting of the machine tool bed was analysed. According to the calculation results, the structural design of the local part where cracks tends to form has been improved, and the heat transfer and the stress are calculated again. By comparing the temperature field with filling of molten cast iron and without filling, it has been found that there was little effect of filling on the results of temperature distribution of the cast, therefore the effect of filling can be ignored in the following temperature field calculation to save computation time. The model has been simplified in the stress field calculation with considering the complexity of the machine tool bed and the cost of computation. Then, the merits and demerits of the original design and the improved design are compared and analyzed depending on the calculated temperature and stress results. It is suggested that the improved one could get a more uniform temperature distribution and then the trend of the crack occurring can be greatly reduced. These results could provide a guide for the actual casting production, achieving the scientific control of the production of castings, ensuring the quality of the castings.


Sign in / Sign up

Export Citation Format

Share Document