scholarly journals The Antitumor Effect of Caffeic Acid Phenethyl Ester by Downregulating Mucosa-Associated Lymphoid Tissue 1 via AR/p53/NF-κB Signaling in Prostate Carcinoma Cells

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 274
Author(s):  
Kang-Shuo Chang ◽  
Ke-Hung Tsui ◽  
Shu-Yuan Hsu ◽  
Hsin-Ching Sung ◽  
Yu-Hsiang Lin ◽  
...  

Caffeic acid phenethyl ester (CAPE), a honeybee propolis-derived bioactive ingredient, has not been extensively elucidated regarding its effect on prostate cancer and associated mechanisms. The mucosa-associated lymphoid tissue 1 gene (MALT1) modulates NF-κB signal transduction in lymphoma and non-lymphoma cells. We investigated the functions and regulatory mechanisms of CAPE in relation to MALT1 in prostate carcinoma cells. In p53- and androgen receptor (AR)-positive prostate carcinoma cells, CAPE downregulated AR and MALT1 expression but enhanced that of p53, thus decreasing androgen-induced activation of MALT1 and prostate-specific antigen expressions. p53 downregulated the expression of MALT in prostate carcinoma cells through the putative consensus and nonconsensus p53 response elements. CAPE downregulated MALT1 expression and thus inhibited NF-κB activity in p53- and AR-negative prostate carcinoma PC-3 cells, eventually reducing cell proliferation, invasion, and tumor growth in vitro and in vivo. CAPE induced the ERK/JNK/p38/AMPKα1/2 signaling pathways; however, pretreatment with the corresponding inhibitors of MAPK or AMPK1/2 did not inhibit the CAPE effect on MALT1 blocking in PC-3 cells. Our findings verify that CAPE is an effective antitumor agent for human androgen-dependent and -independent prostate carcinoma cells in vitro and in vivo through the inhibition of MALT1 expression via the AR/p53/NF-κB signaling pathways.

2021 ◽  
Vol 09 ◽  
Author(s):  
Harshad S Kapare ◽  
Sathiyanarayanan L ◽  
Arulmozhi S ◽  
Kakasaheb Mahadik

Background: Honey bee propolis is one of the natural product reported in various traditional systems of medicines including Ayurveda. Caffeic acid phenethyl ester (CAPE) is an active constituent of propolis which is well known for its anticancer potential. The therapeutic effects of CAPE are restricted owing to its less aqueous solubility and low bioavailability. Objective: In this study CAPE loaded folic acid conjugated nanoparticle system (CLFPN) was investigated to enhance solubility, achieve sustained drug release and improved cytotoxicity of CAPE. Methods: Formulation development, characterization and optimization were carried out by design of experiment approach. In vitro and in vivo cytotoxicity study was carried out for optimized formulations. Results: Developed nanoparticles showed particle size and encapsulation efficiency of 170 ± 2 - 195 ± 3 nm and 75.66 ± 1.52 - 78.80 ± 1.25 % respectively. Optimized formulation CLFPN showed sustained drug release over a period of 42 h. GI50 concentration was decreased by 46.09% for formulation as compared to CAPE in MCF-7 cells indicating targeting effect of CLFPN. An improved in vitro cytotoxic effect was reflected in in-vivo Daltons Ascites Lymphoma model by reducing tumor cells count. Conclusion: The desired nanoparticle characteristic with improved in vivo and in vitro cytotoxicity was shown by developed formulation. Thus it can be further investigated for biomedical applications.


2013 ◽  
Vol 65 (4) ◽  
pp. 515-526 ◽  
Author(s):  
Sumeyya Akyol ◽  
Gulfer Ozturk ◽  
Zeynep Ginis ◽  
Ferah Armutcu ◽  
M. Ramazan Yigitoglu ◽  
...  

The Prostate ◽  
2009 ◽  
Vol 69 (12) ◽  
pp. 1368-1368 ◽  
Author(s):  
Matteo Landriscina ◽  
Cinzia Bagalà ◽  
Annamaria Piscazzi ◽  
Giovanni Schinzari ◽  
Michela Quirino ◽  
...  

The Prostate ◽  
2009 ◽  
Vol 69 (7) ◽  
pp. 744-754 ◽  
Author(s):  
Matteo Landriscina ◽  
Cinzia Bagalà ◽  
Annamaria Piscazzi ◽  
Giovanni Schinzari ◽  
Michela Quirino ◽  
...  

2007 ◽  
Vol 55 (9) ◽  
pp. 3398-3407 ◽  
Author(s):  
Nicola Celli ◽  
Luana K. Dragani ◽  
Stefania Murzilli ◽  
Tommaso Pagliani ◽  
Andreina Poggi

Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2370
Author(s):  
Jia Wang ◽  
Priyanshu Bhargava ◽  
Yue Yu ◽  
Anissa Nofita Sari ◽  
Huayue Zhang ◽  
...  

Caffeic acid phenethyl ester (CAPE) is a key bioactive ingredient of honeybee propolis and is claimed to have anticancer activity. Since mortalin, a hsp70 chaperone, is enriched in a cancerous cell surface, we recruited a unique cell internalizing anti-mortalin antibody (MotAb) to generate mortalin-targeting CAPE nanoparticles (CAPE-MotAb). Biophysical and biomolecular analyses revealed enhanced anticancer activity of CAPE-MotAb both in in vitro and in vivo assays. We demonstrate that CAPE-MotAb cause a stronger dose-dependent growth arrest/apoptosis of cancer cells through the downregulation of Cyclin D1-CDK4, phospho-Rb, PARP-1, and anti-apoptotic protein Bcl2. Concomitantly, a significant increase in the expression of p53, p21WAF1, and caspase cleavage was obtained only in CAPE-MotAb treated cells. We also demonstrate that CAPE-MotAb caused a remarkably enhanced downregulation of proteins critically involved in cell migration. In vivo tumor growth assays for subcutaneous xenografts in nude mice also revealed a significantly enhanced suppression of tumor growth in the treated group suggesting that these novel CAPE-MotAb nanoparticles may serve as a potent anticancer nanomedicine.


MedChemComm ◽  
2013 ◽  
Vol 4 (5) ◽  
pp. 777 ◽  
Author(s):  
Hye Sun Lee ◽  
Soo Youn Lee ◽  
So Hyun Park ◽  
Jin Hyung Lee ◽  
Sang Kook Ahn ◽  
...  

2020 ◽  
Vol 887 ◽  
pp. 173464 ◽  
Author(s):  
Pan Wang ◽  
Noriko Yamabe ◽  
Can-Jian Hong ◽  
Hyoung-Woo Bai ◽  
Bao Ting Zhu

2017 ◽  
Vol 111 (7) ◽  
pp. 388-394
Author(s):  
Nazeh M. Al-Abd ◽  
Zurainee Mohamed Nor ◽  
Quazim O. Junaid ◽  
Marzida Mansor ◽  
M. S. Hasan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document