scholarly journals Novel Caffeic Acid Phenethyl Ester-Mortalin Antibody Nanoparticles Offer Enhanced Selective Cytotoxicity to Cancer Cells

Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2370
Author(s):  
Jia Wang ◽  
Priyanshu Bhargava ◽  
Yue Yu ◽  
Anissa Nofita Sari ◽  
Huayue Zhang ◽  
...  

Caffeic acid phenethyl ester (CAPE) is a key bioactive ingredient of honeybee propolis and is claimed to have anticancer activity. Since mortalin, a hsp70 chaperone, is enriched in a cancerous cell surface, we recruited a unique cell internalizing anti-mortalin antibody (MotAb) to generate mortalin-targeting CAPE nanoparticles (CAPE-MotAb). Biophysical and biomolecular analyses revealed enhanced anticancer activity of CAPE-MotAb both in in vitro and in vivo assays. We demonstrate that CAPE-MotAb cause a stronger dose-dependent growth arrest/apoptosis of cancer cells through the downregulation of Cyclin D1-CDK4, phospho-Rb, PARP-1, and anti-apoptotic protein Bcl2. Concomitantly, a significant increase in the expression of p53, p21WAF1, and caspase cleavage was obtained only in CAPE-MotAb treated cells. We also demonstrate that CAPE-MotAb caused a remarkably enhanced downregulation of proteins critically involved in cell migration. In vivo tumor growth assays for subcutaneous xenografts in nude mice also revealed a significantly enhanced suppression of tumor growth in the treated group suggesting that these novel CAPE-MotAb nanoparticles may serve as a potent anticancer nanomedicine.

2018 ◽  
Vol 17 (3) ◽  
pp. 867-873 ◽  
Author(s):  
Yoshiyuki Ishida ◽  
Ran Gao ◽  
Navjot Shah ◽  
Priyanshu Bhargava ◽  
Takahiro Furune ◽  
...  

Besides honey, honeybees make a sticky substance (called propolis/bee glue) by mixing saliva with poplar tree resin and other botanical sources. It is known to be rich in bioactivities of which the anticancer activity is most studied. Caffeic acid phenethyl ester (CAPE) is a key anticancer component in New Zealand propolis. We have earlier investigated the molecular mechanism of anticancer activity in CAPE and reported that it activates DNA damage signaling in cancer cells. CAPE-induced growth arrest of cells was mediated by downregulation of mortalin and activation of p53 tumor suppressor protein. When antitumor and antimetastasis activities of CAPE were examined in vitro and in vivo, we failed to find significant activities, which was contrary to our expectations. On careful examination, it was revealed that CAPE is unstable and rather gets easily degraded into caffeic acid by secreted esterases. Interestingly, when CAPE was complexed with γ-cyclodextrin (γCD) the activities were significantly enhanced. In the present study, we report that the CAPE-γCD complex with higher cytotoxicity to a wide range of cancer cells is stable in acidic milieu and therefore recommended as an anticancer amalgam. We also report a method for preparation of stable and less-pungent powder of propolis that could be conveniently used for health and therapeutic benefits.


2019 ◽  
Vol 18 (12) ◽  
pp. 1729-1735 ◽  
Author(s):  
Henah Mehraj Balkhi ◽  
Ehtishamul Haq ◽  
Taseen Gul ◽  
Syed Sana

Background: Caffeic acid phenethyl ester and Dasatinib in combination, when used incongruous proportions and durations, present an antitumor potential for glioma in vitro, suggesting a high therapeutic potential for glioma treatment. Objective: In the present study, we addressed the question whether CAPE and Dasatinib target multiple pathways involved in tumor growth, proliferation and development on an in vivo rat model of glioma. Method: Expression analysis of proteins thought to be mediating proliferation, cell motility, angiogenesis, and invasion was carried out to delineate the antineoplastic action of CAPE and Dasatinib. Results: CAPE and Dasatinib modulate the expression of proteins having potential interactive crosstalk with major oncogenic pathways involved in glioma progression. Our results showed that combination treatment modulates the expression of p53 in group co-administered with CAPE and Dasatinib after glioma induction in comparison to the group induced with glioma only. EGFR and PCNA expression were significantly altered in the co-treated group in comparison with the glioma-induced group. The effects of CAPE and Dasatinib treatment were further evaluated on the AKT pathway by Western blot analysis. The co-treated group showed a significant reduction in the expression of AKT. The histopathological analysis further backed the antiproliferative and anti invasive effects of CAPE and Dasatinib. Conclusion: This study in totality suggests that the combinational therapy remarkably reduces the proliferation of glioma cells in vivo, suggesting that CAPE and Dasatinib therapy could be exploited for the management of gliomas without showing drug-related resistances and side effects, suggesting a high therapeutic potential of the therapy in glioma.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ronggang Luo ◽  
Yi Zhuo ◽  
Quan Du ◽  
Rendong Xiao

Abstract Background To detect and investigate the expression of POU domain class 2 transcription factor 2 (POU2F2) in human lung cancer tissues, its role in lung cancer progression, and the potential mechanisms. Methods Immunohistochemical (IHC) assays were conducted to assess the expression of POU2F2 in human lung cancer tissues. Immunoblot assays were performed to assess the expression levels of POU2F2 in human lung cancer tissues and cell lines. CCK-8, colony formation, and transwell-migration/invasion assays were conducted to detect the effects of POU2F2 and AGO1 on the proliferaion and motility of A549 and H1299 cells in vitro. CHIP and luciferase assays were performed for the mechanism study. A tumor xenotransplantation model was used to detect the effects of POU2F2 on tumor growth in vivo. Results We found POU2F2 was highly expressed in human lung cancer tissues and cell lines, and associated with the lung cancer patients’ prognosis and clinical features. POU2F2 promoted the proliferation, and motility of lung cancer cells via targeting AGO1 in vitro. Additionally, POU2F2 promoted tumor growth of lung cancer cells via AGO1 in vivo. Conclusion We found POU2F2 was highly expressed in lung cancer cells and confirmed the involvement of POU2F2 in lung cancer progression, and thought POU2F2 could act as a potential therapeutic target for lung cancer.


2021 ◽  
Vol 09 ◽  
Author(s):  
Harshad S Kapare ◽  
Sathiyanarayanan L ◽  
Arulmozhi S ◽  
Kakasaheb Mahadik

Background: Honey bee propolis is one of the natural product reported in various traditional systems of medicines including Ayurveda. Caffeic acid phenethyl ester (CAPE) is an active constituent of propolis which is well known for its anticancer potential. The therapeutic effects of CAPE are restricted owing to its less aqueous solubility and low bioavailability. Objective: In this study CAPE loaded folic acid conjugated nanoparticle system (CLFPN) was investigated to enhance solubility, achieve sustained drug release and improved cytotoxicity of CAPE. Methods: Formulation development, characterization and optimization were carried out by design of experiment approach. In vitro and in vivo cytotoxicity study was carried out for optimized formulations. Results: Developed nanoparticles showed particle size and encapsulation efficiency of 170 ± 2 - 195 ± 3 nm and 75.66 ± 1.52 - 78.80 ± 1.25 % respectively. Optimized formulation CLFPN showed sustained drug release over a period of 42 h. GI50 concentration was decreased by 46.09% for formulation as compared to CAPE in MCF-7 cells indicating targeting effect of CLFPN. An improved in vitro cytotoxic effect was reflected in in-vivo Daltons Ascites Lymphoma model by reducing tumor cells count. Conclusion: The desired nanoparticle characteristic with improved in vivo and in vitro cytotoxicity was shown by developed formulation. Thus it can be further investigated for biomedical applications.


2013 ◽  
Vol 65 (4) ◽  
pp. 515-526 ◽  
Author(s):  
Sumeyya Akyol ◽  
Gulfer Ozturk ◽  
Zeynep Ginis ◽  
Ferah Armutcu ◽  
M. Ramazan Yigitoglu ◽  
...  

Cancers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 354 ◽  
Author(s):  
Mouna Sdiri ◽  
Xiangmin Li ◽  
William Du ◽  
Safia El-Bok ◽  
Yi-Zhen Xie ◽  
...  

The extensive applications of Cynomorium species and their rich bioactive secondary metabolites have inspired many pharmacological investigations. Previous research has been conducted to examine the biological activities and numerous interesting pharmaceutical activities have been reported. However, the antitumor activities of these species are unclear. To understand the potential anticancer activity, we screened Cynomorium coccineum and Cynomorium songaricum using three different extracts of each species. In this study, the selected extracts were evaluated for their ability to decrease survival rates of five different cancer cell lines. We compared the cytotoxicity of the three different extracts to the anticancer drug vinblastine and one of the most well-known medicinal mushrooms Amaurederma rude. We found that the water and alcohol extracts of C. coccineum at the very low concentrations possessed very high capacity in decreasing the cancer cells viability with a potential inhibition of tumorigenesis. Based on these primitive data, we subsequently tested the ethanol and the water extracts of C. coccineum, respectively in in vitro and in vivo assays. Cell cycle progression and induction of programmed cell death were investigated at both biological and molecular levels to understand the mechanism of the antitumor inhibitory action of the C. coccineum. The in vitro experiments showed that the treated cancer cells formed fewer and smaller colonies than the untreated cells. Cell cycle progression was inhibited, and the ethanol extract of C. coccineum at a low concentration induced accumulation of cells in the G1 phase. We also found that the C. coccineum’s extracts suppressed viability of two murine cancer cell lines. In the in vivo experiments, we injected mice with murine cancer cell line B16, followed by peritoneal injection of the water extract. The treatment prolonged mouse survival significantly. The tumors grew at a slower rate than the control. Down-regulation of c-myc expression appeared to be associated with these effects. Further investigation showed that treatment with C. coccineum induced the overexpression of the tumor suppressor Foxo3 and other molecules involved in inducing autophagy. These results showed that the C. coccineum extract exerts its antiproliferative activity through the induction of cell death pathway. Thus, the Cynomorium plants appear to be a promising source of new antineoplastic compounds.


Cancers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 254 ◽  
Author(s):  
Vincent Drubay ◽  
Nicolas Skrypek ◽  
Lucie Cordiez ◽  
Romain Vasseur ◽  
Céline Schulz ◽  
...  

Pancreatic adenocarcinoma (PDAC) is one of the most deadly cancers in the Western world because of a lack of early diagnostic markers and efficient therapeutics. At the time of diagnosis, more than 80% of patients have metastasis or locally advanced cancer and are therefore not eligible for surgical resection. Pancreatic cancer cells also harbour a high resistance to chemotherapeutic drugs such as gemcitabine that is one of the main palliative treatments for PDAC. Proteins involved in TGF-β signaling pathway (SMAD4 or TGF-βRII) are frequently mutated in PDAC (50–80%). TGF-β signalling pathway plays antagonistic roles during carcinogenesis by initially inhibiting epithelial growth and later promoting the progression of advanced tumors and thus emerged as both tumor suppressor and oncogenic pathways. In order to decipher the role of TGF-β in pancreatic carcinogenesis and chemoresistance, we generated CAPAN-1 and CAPAN-2 cell lines knocked down for TGF-βRII (first actor of TGF-β signaling). The impact on biological properties of these TGF-βRII-KD cells was studied both in vitro and in vivo. We show that TGF-βRII silencing alters tumor growth and migration as well as resistance to gemcitabine. TGF-βRII silencing also leads to S727 STAT3 and S63 c-Jun phosphorylation, decrease of MRP3 and increase of MRP4 ABC transporter expression and induction of a partial EMT phenotype. These markers associated with TGF-β signaling pathways may thus appear as potent therapeutic tools to better treat/manage pancreatic cancer.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 10101-10101
Author(s):  
J. Hartman ◽  
K. Lindberg ◽  
J. Inzunza ◽  
J. Wan ◽  
A. Ström ◽  
...  

10101 Background: Estrogens are well known stimulators of breast cancer cell growth in vitro as well as in vivo. Two different estrogen receptors exist, namely estrogen receptor (ER) α and β. ERα mediates the proliferative effect of estrogen in breast cancer cells and we have earlier shown that ERβ inhibits cell-cycle progression in vitro. Estrogens are well known stimulators of in vivo breast cancer cell growth as well as angiogenesis, and the effect is mediated through ERα. The function of ERβ in this context is not well understood. Methods: We have used ERα-positive T47D breast cancer cells stably transfected with a Tet/Off regulated ERβ expression vector system. The ERβ-inducible tumor cells are studied in vitro as well as in vivo. Results: By transplanting ERβ-inducible breast cancer cells into SCID-mice, we show that ERβ inhibits tumor growth and reduces the volume of established tumors. Furthermore, we show by immunohistochemistry, that the number of blood microvessels in the tumor periphery is decreased by ERβ expression, counteracting the well-known pro-angiogenic effect of ERα. By Western blot analysis on tumor extracts, we show that the concentration of the important pro-angiogenic growth factors VEGF and bFGF, normally expressed by breast tumor cells, is decreased in the ERβ-expressing tumors compared to the normal tumors. To exclude that the observed anti-angiogenic effect is just a result of reduced tumor growth, we incubated Tet/Off regulated ERβ expressing cells in vitro, during non-hypoxic conditions. We found that the expression of ERβ leads to decreased expression of VEGF and PDGFβ at the mRNA and protein-levels. In transient transfection assays, we found estrogen-ERα mediated up regulation of VEGF, PDGFβ and bFGF-promoter activities in T47D cells, and these activities were all suppressed following co-transfection with an ERβ-expression vector. Conclusions: We conclude that ERβ inhibits growth factor expression at transcriptional level in breast cancer cells; taken together, our data indicates that ERβ inhibits growth and angiogenesis of tumors formed by T47D breast cancer cells. This makes ERβ an interesting therapeutic target in breast cancer and perhaps treatment with the newly designed ERβ-selective ligands might work as a new anti-proliferative and anti-angiogenic therapy. No significant financial relationships to disclose.


Sign in / Sign up

Export Citation Format

Share Document