scholarly journals Ultrasonication-Assisted Synthesis of ZnxCd1−xS for Enhanced Visible-Light Photocatalytic Activity

Catalysts ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 276
Author(s):  
Lei Yang ◽  
Maolin Zhang ◽  
Mingzhu Liu ◽  
You Fan ◽  
Haijie Ben ◽  
...  

ZnxCd1−xS as a solid solution photocatalyst has attracted widespread attention for its unique adjustable band gap structure and good and stable performance. A novel synthesis approach for ZnxCd1−xS is still required to further improve its performance. In this study, we synthesized a series of ZnxCd1−xS (x = 0−1) solid solutions via an ultrasonication-assisted hydrothermal route. In comparison with conventional methods of preparation, the sample prepared by our innovative method showed enhanced photocatalytic activity for the degradation of a methyl orange (MO) solution under visible light due to its high crystallinity and small crystallite size. Furthermore, the composition and bandgap of ZnxCd1−xS can be tuned by adjusting the mole ratio of Zn2+/Cd2+. Zn0.3Cd0.7S shows the highest level of activity and stability for the degradation of MO with k = 0.85 h−1, which is 2.2 times higher than that of CdS. The balance between band gap structure-directed redox capacity and light absorption of Zn0.3Cd0.7S accounts for its high photocatalytic performance, both of which are determined by the composition of the solid solution. Also, a degradation mechanism of MO over the sample is tentatively proposed. This study demonstrates a new strategy to synthesize highly efficient sulfide photocatalysts.

2006 ◽  
Vol 78 (12) ◽  
pp. 2267-2276 ◽  
Author(s):  
Kazuhiko Maeda ◽  
Kentaro Teramura ◽  
Nobuo Saito ◽  
Yasunobu Inoue ◽  
Hisayoshi Kobayashi ◽  
...  

Oxynitride photocatalysts with d10 electronic configuration are presented as effective non-oxide catalysts for overall water splitting. Germanium nitride (β-Ge3N4) having a band gap of 3.8-3.9 eV modified with RuO2 nanoparticles as a cocatalyst is shown to achieve stoichiometric decomposition of H2O into H2 and O2 under UV irradiation (λ > 200 nm). A novel solid solution of GaN and ZnO, (Ga1-xZnx)(N1-xOx), with a band gap of 2.4-2.8 eV (depending on composition) achieves overall water splitting under visible light (λ > 400 nm) when loaded with an appropriate cocatalyst. The narrower band gap of the solid solution is attributed to the bonding between Zn and N atoms at the top of the valence band. The photocatalytic activity of (Ga1-xZnx)(N1-xOx) for overall water splitting is strongly dependent on both the cocatalyst and the crystallinity and composition of the material. The quantum efficiency of (Ga1-xZnx)(N1-xOx) with Rh and Cr mixed-oxide nanoparticles is 2-3 % at 420-440 nm, which is the highest reported efficiency for overall water splitting in the visible-light region.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Jun Zhang ◽  
Huabo Li ◽  
Hairui Yao ◽  
Hao Zhang

The photooxidation process of aniline-containing simulated wastewater under visible light irradiation over BiOBr microcrystal grains with different shapes was studied. The distinctive surface microstructures of the BiOBr microcrystals, like clustered flower petals and quadrate lamellas, were produced by using imidazole ionic liquid and inorganic bromide as Br sources and by solvothermal and hydrothermal route, respectively. The ionic liquid not only can impact the products’ morphology, but also can largely improve the photocatalytic activity of the BiOBr microcrystals due to the soft templating effect. The top degradation ratio of the aniline wastewater photocatalyzed by lamellar BiOBr crystals is 23.71%, but the equivalent value photocatalyzed by flower petal-like BiOBr crystals is almost twice as much; that is, it reaches 46.51%. The photodegradation effect and mechanism over differently shaped BiOBr microcrystals have been compared.


2011 ◽  
Vol 1292 ◽  
Author(s):  
Dengrong Cai ◽  
Jianmin Li ◽  
Shundong Bu ◽  
Shengwen Yu ◽  
Dengren Jin ◽  
...  

ABSTRACTA facile hydrothermal route assisted by polyethylene glycol (PEG) 400 was utilized to synthesize single-phase Bi2Fe4O9 crystallites. X-ray diffraction results showed the products with PEG 400 of 30 g/L exhibited a preferred growth along the (001) plane. Transmission electron microscopy indicated that the morphology of the as-prepared Bi2Fe4O9 crystallites with PEG 400 were plake-like and rod-like. Strong absorption in visible-light region of the products was characterized by UV-vis diffuse reflectance spectrum (UV-DRS). The photocatalytic activity of Bi2Fe4O9 crystallites was evaluated on degradation of methyl orange (MO) under visible light irradiation. For 3 h irradiation, the degradation ratio was increased to 93% with the aid of a small amount of H2O2. The analysis of FT-IR spectra proved that the Bi2Fe4O9 catalysts were remained stable after the photocalytic reactions.


2018 ◽  
Vol 32 (17) ◽  
pp. 1850185 ◽  
Author(s):  
Yun-Hui Si ◽  
Yu Xia ◽  
Ya-Yun Li ◽  
Shao-Ke Shang ◽  
Xin-Bo Xiong ◽  
...  

A series of BiFeO3 and BiFe[Formula: see text]Mn[Formula: see text]O3 (x = 0, 0.02, 0.04, 0.06, 0.08, 0.10) were synthesized by a hydrothermal method. The samples were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy (EDS) and UV–Vis diffuse reflectance spectroscopy, and their photocatalytic activity was studied by photocatalytic degradation of methylene blue in aqueous solution under visible light irradiation. The band gap of BiFeO3 was significantly decreased from 2.26 eV to 1.90 eV with the doping of Mn. Furthermore, the 6% Mn-doped BiFeO3 photocatalyst exhibited the best activity with a degradation rate of 94% after irradiation for 100 min. The enhanced photocatalytic activity with Mn doping could be attributed to the enhanced optical absorption, increment of surface reactive sites and reduction of electron–hole recombination. Our results may be conducive to design more efficient photocatalysts responsive to visible light among narrow band gap semiconductors.


2012 ◽  
Vol 11 ◽  
pp. 1048-1051 ◽  
Author(s):  
Jiejun Zhang ◽  
Junhong Wang ◽  
Meie Chen ◽  
Zhan Zhang

Sign in / Sign up

Export Citation Format

Share Document