scholarly journals Photoelectrochemical Water Oxidation by Cobalt Cytochrome C Integrated-ATO Photoanode

Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 626
Author(s):  
Carla Casadevall ◽  
Haojie Zhang ◽  
Shaojiang Chen ◽  
Dayn J. Sommer ◽  
Dong-Kyun Seo ◽  
...  

Here, we report the immobilization of Co-protoporphyrin IX (Co-PPIX) substituted cytochrome c (Co-cyt c) on Antimony-doped Tin Oxide (ATO) as a catalyst for photoelectrochemical oxidation of water. Under visible light irradiation (λ > 450 nm), the ATO-Co-cyt c photoanode displays ~6-fold enhancement in photocurrent density relative to ATO-Co-PPIX at 0.25 V vs. RHE at pH 5.0. The light-induced water oxidation activity of the system was demonstrated by detecting evolved stoichiometric oxygen by gas chromatography, and incident photon to current efficiency was measured as 4.1% at 450 nm. The faradaic efficiency for the generated oxygen was 97%, with a 671 turnover number (TON) for oxygen. The current density had a slow decay over the course of 6 h of constant irradiation and applied potential, which exhibits the robustness of catalyst-ATO interaction.

2019 ◽  
Author(s):  
Nina Heidary ◽  
Nikolay Kornienko

<p>The electrochemical oxidation of biomass platforms such as 5-hydroxymethylfurfural (HMF) to value-added chemicals is an emerging clean technology. However, mechanistic knowledge of this reaction in an electrochemical context is still lacking and <i>operando</i> studies are even more rare. In this work, we utilize core-shell gold-metal oxide nanostructures which enable<i> operando</i> surface-enhanced Raman spectroelectrochemical studies to simultaneously visualize catalyst material transformation and surface reaction intermediates under an applied voltage. As a case study, we show how the transformation of NiOOH from ~1-2 nm amorphous Ni layers facilitates the onset of HMF oxidation to 2,5-furandicarboxylic acid (FDCA), which is attained with near 100% Faradaic efficiency in 1M KOH. In contrast to the case in 1M KOH, NiOOH formation is suppressed, and consequently HMF oxidation is sluggish 10 mM KOH, even at high potentials. <i>Operando </i>Raman experiments elucidate how surface adsorption and interaction dictates product selectivity and how the surface intermediates evolve with applied potential. We further extend our methodology to investigate NiFe, Co, Fe, and CoFe catalysts and demonstrate that high water oxidation activity is not necessarily correlated with excellent HMF oxidation performance and highlight catalytic factors important for this reaction such as reactant-surface interactions and catalysts’ physical and electronic structure. </p>


2019 ◽  
Author(s):  
Nina Heidary ◽  
Nikolay Kornienko

<p>The electrochemical oxidation of biomass platforms such as 5-hydroxymethylfurfural (HMF) to value-added chemicals is an emerging clean technology. However, mechanistic knowledge of this reaction in an electrochemical context is still lacking and <i>operando</i> studies are even more rare. In this work, we utilize core-shell gold-metal oxide nanostructures which enable<i> operando</i> surface-enhanced Raman spectroelectrochemical studies to simultaneously visualize catalyst material transformation and surface reaction intermediates under an applied voltage. As a case study, we show how the transformation of NiOOH from ~1-2 nm amorphous Ni layers facilitates the onset of HMF oxidation to 2,5-furandicarboxylic acid (FDCA), which is attained with near 100% Faradaic efficiency in 1M KOH. In contrast to the case in 1M KOH, NiOOH formation is suppressed, and consequently HMF oxidation is sluggish 10 mM KOH, even at high potentials. <i>Operando </i>Raman experiments elucidate how surface adsorption and interaction dictates product selectivity and how the surface intermediates evolve with applied potential. We further extend our methodology to investigate NiFe, Co, Fe, and CoFe catalysts and demonstrate that high water oxidation activity is not necessarily correlated with excellent HMF oxidation performance and highlight catalytic factors important for this reaction such as reactant-surface interactions and catalysts’ physical and electronic structure. </p>


2021 ◽  
Vol 20 (10) ◽  
pp. 1243-1255
Author(s):  
Giulia Alice Volpato ◽  
Elena Colusso ◽  
Lorenzo Paoloni ◽  
Mattia Forchetta ◽  
Francesco Sgarbossa ◽  
...  

Abstract Dye-sensitized photoelectrochemical cells represent an appealing solution for artificial photosynthesis, aimed at the conversion of solar light into fuels or commodity chemicals. Extensive efforts have been directed towards the development of photoelectrodes combining semiconductor materials and organic dyes; the use of molecular components allows to tune the absorption and redox properties of the material. Recently, we have reported the use of a class of pentacyclic quinoid organic dyes (KuQuinone) chemisorbed onto semiconducting tin oxide as photoanodes for water oxidation. In this work, we investigate the effect of the SnO2 semiconductor thickness and morphology and of the dye-anchoring group on the photoelectrochemical performance of the electrodes. The optimized materials are mesoporous SnO2 layers with 2.5 μm film thickness combined with a KuQuinone dye with a 3-carboxylpropyl-anchoring chain: these electrodes achieve light-harvesting efficiency of 93% at the maximum absorption wavelength of 533 nm, and photocurrent density J up to 350 μA/cm2 in the photoelectrochemical oxidation of ascorbate, although with a limited incident photon-to-current efficiency of 0.075%. Calculations based on the density functional theory (DFT) support the role of the reduced species of the KuQuinone dye via a proton-coupled electron transfer as the competent species involved in the electron transfer to the tin oxide semiconductor. Finally, a preliminary investigation of the photoelectrodes towards benzyl alcohol oxidation is presented, achieving photocurrent density up to 90 μA/cm2 in acetonitrile in the presence of N-hydroxysuccinimide and pyridine as redox mediator and base, respectively. These results support the possibility of using molecular-based materials in synthetic photoelectrochemistry. Graphic abstract


2021 ◽  
Vol 60 (9) ◽  
pp. 6852-6852
Author(s):  
Md Asmaul Hoque ◽  
Abhishek Dutta Chowdhury ◽  
Somnath Maji ◽  
Jordi Benet-Buchholz ◽  
Mehmed Z. Ertem ◽  
...  

2021 ◽  
Vol 35 (3) ◽  
Author(s):  
Zohreh Shaghaghi ◽  
Parya Sallakh Kouhsangini ◽  
Rahim Mohammad‐Rezaei

2021 ◽  
pp. 149898
Author(s):  
Nguyen Duc Quang ◽  
Phuoc Cao Van ◽  
Duc Duy Le ◽  
Sutripto Majumder ◽  
Nguyen Duc Chinh ◽  
...  

2021 ◽  
Vol 119 (1) ◽  
pp. 013903
Author(s):  
Qian Yu ◽  
Minji Yang ◽  
Xin Luo ◽  
Zeyu Fan ◽  
Qianbao Wu ◽  
...  

Author(s):  
Tianqi Liu ◽  
Ge Li ◽  
Nannan Shen ◽  
Mårten S. G. Ahlquist ◽  
Licheng Sun

Author(s):  
Anna A. Wilson ◽  
Sacha Corby ◽  
Laia Francàs ◽  
James R. Durrant ◽  
Andreas Kafizas

PdO nanoparticles grown on the surface of nanostructured WO3 photoanodes dramatically increase the faradaic efficiency of water oxidation from 52% to 92%, whilst also enhancing photocurrent generation and electron extraction rates.


2021 ◽  
Vol 57 (29) ◽  
pp. 3611-3614
Author(s):  
Rong Chen ◽  
Chao-Long Chen ◽  
Ming-Hao Du ◽  
Xing Wang ◽  
Cheng Wang ◽  
...  

The stable 48-metal Ln36Co12 clusters show an effective water oxidation activity under weak acidic conditions because of the synergistic effect between lanthanide and transition metals in O–O bond formation.


Sign in / Sign up

Export Citation Format

Share Document