scholarly journals Artificial photosynthesis: photoanodes based on polyquinoid dyes onto mesoporous tin oxide surface

2021 ◽  
Vol 20 (10) ◽  
pp. 1243-1255
Author(s):  
Giulia Alice Volpato ◽  
Elena Colusso ◽  
Lorenzo Paoloni ◽  
Mattia Forchetta ◽  
Francesco Sgarbossa ◽  
...  

Abstract Dye-sensitized photoelectrochemical cells represent an appealing solution for artificial photosynthesis, aimed at the conversion of solar light into fuels or commodity chemicals. Extensive efforts have been directed towards the development of photoelectrodes combining semiconductor materials and organic dyes; the use of molecular components allows to tune the absorption and redox properties of the material. Recently, we have reported the use of a class of pentacyclic quinoid organic dyes (KuQuinone) chemisorbed onto semiconducting tin oxide as photoanodes for water oxidation. In this work, we investigate the effect of the SnO2 semiconductor thickness and morphology and of the dye-anchoring group on the photoelectrochemical performance of the electrodes. The optimized materials are mesoporous SnO2 layers with 2.5 μm film thickness combined with a KuQuinone dye with a 3-carboxylpropyl-anchoring chain: these electrodes achieve light-harvesting efficiency of 93% at the maximum absorption wavelength of 533 nm, and photocurrent density J up to 350 μA/cm2 in the photoelectrochemical oxidation of ascorbate, although with a limited incident photon-to-current efficiency of 0.075%. Calculations based on the density functional theory (DFT) support the role of the reduced species of the KuQuinone dye via a proton-coupled electron transfer as the competent species involved in the electron transfer to the tin oxide semiconductor. Finally, a preliminary investigation of the photoelectrodes towards benzyl alcohol oxidation is presented, achieving photocurrent density up to 90 μA/cm2 in acetonitrile in the presence of N-hydroxysuccinimide and pyridine as redox mediator and base, respectively. These results support the possibility of using molecular-based materials in synthetic photoelectrochemistry. Graphic abstract

2018 ◽  
Vol 115 (34) ◽  
pp. 8523-8528 ◽  
Author(s):  
Degao Wang ◽  
Michael S. Eberhart ◽  
Matthew V. Sheridan ◽  
Ke Hu ◽  
Benjamin D. Sherman ◽  
...  

Stabilized photoanodes for light-driven water oxidation have been prepared on nanoparticle core/shell electrodes with surface-stabilized donor–acceptor chromophores, a water oxidation catalyst, and an electron-transfer mediator. For the electrode, fluorine-doped tin oxide FTO|SnO2/TiO2|-Org1-|1.1 nm Al2O3|-RuP2+-WOC (water oxidation catalyst) with Org1 (1-cyano-2-(4-(diphenylamino)phenyl)vinyl)phosphonic acid), the mediator RuP2+ ([Ru(4,4-(PO3H2)2-2,2-bipyridine)(2,2-bipyridine)2]2+), and the WOC, Ru(bda)(py(CH2)(3or10)P(O3H)2)2 (bda is 2,2-bipyridine-6,6-dicarboxylate with x = 3 or 10), solar excitation resulted in photocurrents of ∼500 µA/cm2 and quantitative O2 evolution at pH 4.65. Related results were obtained for other Ru(II) polypyridyl mediators. For the organic dye PP (5-(4-(dihydroxyphosphoryl)phenyl)-10,15,20-Tris(mesityl)porphyrin), solar water oxidation occurred with a driving force near 0 V.


Inorganics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 32 ◽  
Author(s):  
Adiran de Aguirre ◽  
Ignacio Funes-Ardoiz ◽  
Feliu Maseras

The presence of single-electron transfer (SET) steps in water oxidation processes catalyzed by first-row transition metal complexes has been recently recognized, but the computational characterization of this type of process is not trivial. We report a systematic theoretical study based on density functional theory (DFT) calculations on the reactivity of a specific copper complex active in water oxidation that reacts through two consecutive single-electron transfers. Both inner-sphere (through transition state location) and outer-sphere (through Marcus theory) mechanisms are analyzed. The first electron transfer is found to operate through outer-sphere, and the second one through inner-sphere. The current work proposes a scheme for the systematic study of single-electron transfer in water oxidation catalysis and beyond.


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 626
Author(s):  
Carla Casadevall ◽  
Haojie Zhang ◽  
Shaojiang Chen ◽  
Dayn J. Sommer ◽  
Dong-Kyun Seo ◽  
...  

Here, we report the immobilization of Co-protoporphyrin IX (Co-PPIX) substituted cytochrome c (Co-cyt c) on Antimony-doped Tin Oxide (ATO) as a catalyst for photoelectrochemical oxidation of water. Under visible light irradiation (λ > 450 nm), the ATO-Co-cyt c photoanode displays ~6-fold enhancement in photocurrent density relative to ATO-Co-PPIX at 0.25 V vs. RHE at pH 5.0. The light-induced water oxidation activity of the system was demonstrated by detecting evolved stoichiometric oxygen by gas chromatography, and incident photon to current efficiency was measured as 4.1% at 450 nm. The faradaic efficiency for the generated oxygen was 97%, with a 671 turnover number (TON) for oxygen. The current density had a slow decay over the course of 6 h of constant irradiation and applied potential, which exhibits the robustness of catalyst-ATO interaction.


RSC Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 3071-3078
Author(s):  
Chundan Lin ◽  
Yanbing Liu ◽  
Di Shao ◽  
Guochen Wang ◽  
Huiying Xu ◽  
...  

We designed a series of double donor organic dyes based on experimentally synthesized dye WD8, and further investigated their electronic structure, stability of the dye/TiO2 (101) systems, density of states (DOS) and absorption spectra using density functional theory (DFT).


2020 ◽  
Author(s):  
Dalvin D Méndez-Hernández ◽  
Amgalanbaatar Baldansuren ◽  
Vidmantas Kalendra ◽  
Philip Charles ◽  
Brian Mark ◽  
...  

<p>Light-driven water oxidation in algae, cyanobacteria, and higher plants generates dioxygen that supports life on Earth. The water-oxidation reaction is catalyzed by the oxygen-evolving complex (OEC) in photosystem II (PSII) that is comprised of the tetranuclear manganese calcium-oxo (Mn<sub>4</sub>CaO<sub>5</sub>) cluster, with participation of the redox-active tyrosine residue (Y<sub>Z</sub>) and a hydrogen-bonded network of amino acids and water molecules. Y<sub>Z</sub> mediates successive proton-coupled electron transfer (PCET) reactions that are essential for the oxidation of water to dioxygen at the Mn<sub>4</sub>CaO<sub>5</sub> cluster. It has been proposed that the strong hydrogen bond between Y<sub>Z</sub> and and its conjugate base, D1-His190, likely renders Y<sub>Z</sub> kinetically and thermodynamically competent leading to highly efficient water oxidation.<sup>1</sup> However, a detailed understanding of PCET at Y<sub>Z</sub> remains elusive due to the transient nature of its intermediate states. In this study, we utilize a combination of high-resolution two-dimensional (2D) <sup>14</sup>N hyperfine sublevel correlation (HYSCORE) spectroscopy and density functional theory (DFT) methods to investigate the electronic structure of a bioinspired artificial photosynthetic reaction center, benzimidazole-phenol porphyrin (BiP–PF<sub>10</sub>), that mimics the PCET process at the Y<sub>Z</sub> residue of PSII. The results of these studies underscore the importance of proximal water molecules and charge delocalization on the electronic structure of the artificial reaction center.</p>


2020 ◽  
Author(s):  
Dalvin D Méndez-Hernández ◽  
Amgalanbaatar Baldansuren ◽  
Vidmantas Kalendra ◽  
Philip Charles ◽  
Brian Mark ◽  
...  

<p>Light-driven water oxidation in algae, cyanobacteria, and higher plants generates dioxygen that supports life on Earth. The water-oxidation reaction is catalyzed by the oxygen-evolving complex (OEC) in photosystem II (PSII) that is comprised of the tetranuclear manganese calcium-oxo (Mn<sub>4</sub>CaO<sub>5</sub>) cluster, with participation of the redox-active tyrosine residue (Y<sub>Z</sub>) and a hydrogen-bonded network of amino acids and water molecules. Y<sub>Z</sub> mediates successive proton-coupled electron transfer (PCET) reactions that are essential for the oxidation of water to dioxygen at the Mn<sub>4</sub>CaO<sub>5</sub> cluster. It has been proposed that the strong hydrogen bond between Y<sub>Z</sub> and and its conjugate base, D1-His190, likely renders Y<sub>Z</sub> kinetically and thermodynamically competent leading to highly efficient water oxidation.<sup>1</sup> However, a detailed understanding of PCET at Y<sub>Z</sub> remains elusive due to the transient nature of its intermediate states. In this study, we utilize a combination of high-resolution two-dimensional (2D) <sup>14</sup>N hyperfine sublevel correlation (HYSCORE) spectroscopy and density functional theory (DFT) methods to investigate the electronic structure of a bioinspired artificial photosynthetic reaction center, benzimidazole-phenol porphyrin (BiP–PF<sub>10</sub>), that mimics the PCET process at the Y<sub>Z</sub> residue of PSII. The results of these studies underscore the importance of proximal water molecules and charge delocalization on the electronic structure of the artificial reaction center.</p>


2021 ◽  
Vol 118 (52) ◽  
pp. e2113910118
Author(s):  
Yuki Tanahashi ◽  
Kosuke Takahashi ◽  
Yuta Tsubonouchi ◽  
Shunsuke Nozawa ◽  
Shin-ichi Adachi ◽  
...  

The understanding of O–O bond formation is of great importance for revealing the mechanism of water oxidation in photosynthesis and for developing efficient catalysts for water oxidation in artificial photosynthesis. The chemical oxidation of the RuII2(OH)(OH2) core with the vicinal OH and OH2 ligands was spectroscopically and theoretically investigated to provide a mechanistic insight into the O–O bond formation in the core. We demonstrate O–O bond formation at the low-valent RuIII2(OH) core with the vicinal OH ligands to form the RuII2(μ-OOH) core with a μ-OOH bridge. The O–O bond formation is induced by deprotonation of one of the OH ligands of RuIII2(OH)2 via intramolecular coupling of the OH and deprotonated O− ligands, conjugated with two-electron transfer from two RuIII centers to their ligands. The intersystem crossing between singlet and triple states of RuII2(μ-OOH) is easily switched by exchange of H+ between the μ-OOH bridge and the auxiliary backbone ligand.


2015 ◽  
Vol 5 (3) ◽  
pp. 20140082 ◽  
Author(s):  
Kosei Ueno ◽  
Tomoya Oshikiri ◽  
Xu Shi ◽  
Yuqing Zhong ◽  
Hiroaki Misawa

We have successfully developed a plasmon-induced artificial photosynthesis system that uses a gold nanoparticle-loaded oxide semiconductor electrode to produce useful chemical energy as hydrogen and ammonia. The most important feature of this system is that both sides of a strontium titanate single-crystal substrate are used without an electrochemical apparatus. Plasmon-induced water splitting occurred even with a minimum chemical bias of 0.23 V owing to the plasmonic effects based on the efficient oxidation of water and the use of platinum as a co-catalyst for reduction. Photocurrent measurements were performed to determine the electron transfer between the gold nanoparticles and the oxide semiconductor. The efficiency of water oxidation was determined through spectroelectrochemical experiments aimed at elucidating the electron density in the gold nanoparticles. A set-up similar to the water-splitting system was used to synthesize ammonia via nitrogen fixation using ruthenium instead of platinum as a co-catalyst.


Sign in / Sign up

Export Citation Format

Share Document