scholarly journals Modified Carbon Nanotubes: Surface Properties and Activity in Oxygen Reduction Reaction

Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1354
Author(s):  
Vera Bogdanovskaya ◽  
Inna Vernigor ◽  
Marina Radina ◽  
Vladimir Sobolev ◽  
Vladimir Andreev ◽  
...  

In order to develop highly efficient and stable catalysts for oxygen reduction reaction (ORR) that do not contain precious metals, it is necessary to modify carbon nanotubes (CNT) and define the effect of the modification on their activity in the ORR. In this work, the modification of CNTs included functionalization by treatment in NaOH or HNO3 (soft and hard conditions, respectively) and subsequent doping with nitrogen (melamine was used as a precursor). The main parameters that determine the efficiency of modified CNT in ORR are composition and surface area (XPS, BET), hydrophilic–hydrophobic surface properties (method of standard contact porosimetry (MSP)) and zeta potential (dynamic light scattering method). The activity of CNT in ORR was assessed following half-wave potential, current density within kinetic potential range and the electrochemically active surface area (SEAS). The obtained results show that the modification of CNT with oxygen-containing groups leads to an increase in hydrophilicity and, consequently, SEAS, as well as the total (overall) current. Subsequent doping with nitrogen ensures further increase in SEAS, higher zeta potential and specific activity in ORR, reflected in the shift of the half-wave potential by 150 mV for CNTNaOH-N and 110 mV for CNTHNO3-N relative to CNTNaOH and CNTHNO3, respectively. Moreover, the introduction of N into the structure of CNTHNO3 increases their corrosion stability.

2020 ◽  
Vol 56 (32) ◽  
pp. 4488-4491 ◽  
Author(s):  
Haobin Zhong ◽  
Changwei Shi ◽  
Jiantao Li ◽  
Ruohan Yu ◽  
Qiang Yu ◽  
...  

Cobalt decorated nitrogen-doped carbon bowls (Co@NCB) demonstrate better ORR performance than Pt/C in terms of half-wave potential and stability.


2020 ◽  
Vol 7 (4) ◽  
pp. 946-952 ◽  
Author(s):  
Kaili Li ◽  
Daohao Li ◽  
Liangkui Zhu ◽  
Zhuangzhuang Gao ◽  
Qianrong Fang ◽  
...  

A high-performance electrocatalytic material was derived from a new bimetallic ZIF precursor, exhibiting excellent oxygen reduction reaction performance with a half-wave potential (E1/2) of 0.849 V, superior to that of commercial Pt/C.


2021 ◽  
Vol 56 (14) ◽  
pp. 8600-8612
Author(s):  
Qing Zhao ◽  
Cheng Wang ◽  
Haifeng Wang ◽  
Jianlong Wang

AbstractDevelopment of the more stable nonprecious oxygen reduction reaction (ORR) catalyst is of great significance nowadays. Herein, a high-performance iron-doped integral uniform macrocyclic organic framework (MOF–FeZn) catalyst is synthesized through a combined hydrothermal and pyrolysis process, showing favorable ORR activity and stability in acid. This as-synthesized MOF–FeZn catalyst displays high porous and graphitic structures with sufficient catalytic active dopants of pyridinic N, Fe–N, pyrrolic N, graphitic N, making it a promising ORR candidate catalyst with high electrochemical stability. The onset potential, half-wave potential and limited diffusion current density of MOF–FeZn are 0.93 V @ 0.1 mA cm−2, 0.768 V@ 2.757 mA cm−2 and 5.5 mA cm−2, respectively, which are comparable to the state-of-the-art nonprecious catalyst and commercial Pt/C. ORR catalysis on MOF–FeZn follows the nearly four-electron path. What is more, MOF–FeZn can sustain the 10,000 cycles electrochemical potential cycling process in acid with the half-wave potential changed only 21 mV, superior to the reduction of 149 mV for Pt/C. The well-developed integral uniform structures, homogeneously dispersed carbides and nitrides protected by the highly graphitic carbon layers and the better agglomeration suppression of nanoparticles by the confined graphitic carbon layers on catalyst can significantly enhance the catalytic activity and stability of MOF–FeZn.


2021 ◽  
Vol 23 (7) ◽  
pp. 4454-4454
Author(s):  
Kunran Yang ◽  
Jeremie Zaffran ◽  
Bo Yang

Correction for ‘Fast prediction of oxygen reduction reaction activity on carbon nanotubes with a localized geometric descriptor’ by Kunran Yang et al., Phys. Chem. Chem. Phys., 2020, 22, 890–895, DOI: 10.1039/C9CP04885E.


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 623
Author(s):  
Mengfan Shen ◽  
Ziwei Meng ◽  
Tong Xue ◽  
Hongfang Shen ◽  
Xiang-Hui Yan

To explore high-performing alternatives to platinum-based catalysts is highly desirable for lowering costs and thus promoting fuel cell commercialization. Herein, self-supported Fe-N-C materials were prepared by the pyrolysis of dual precursors including EDTA ferric sodium (EDTAFeNa) and melamine (MA), followed by acid-leaching and final annealing. Towards an oxygen reduction reaction (ORR) in 0.1 M KOH, the as-prepared MA/EDTAFeNa-HT2 delivered onset (Eonset) and half-wave (E1/2) potentials of 0.97 and 0.84 V vs. RHE, respectively, identical with that of a state-of-the-art Pt/C catalyst, accompanied with predominantly a four-electron pathway. The introduction of MA and extension of acid-leaching promoted a positive shift of 50 mV for E1/2 relative to that of only the EDTAFeNa-derived counterpart. It was revealed that the enhancement of ORR activity is attributed to a decrease in magnetic Fe species and increase in pyridinic/quanternary nitrogen content whilst nearly excluding effects of the graphitization degree, variety of crystalline iron species, and mesoscopic structure. The usage of dual precursors exhibited great potential for the large-scale production of inexpensive and efficient Fe-N-C materials.


2019 ◽  
Vol 4 (36) ◽  
pp. 10863-10867
Author(s):  
Yanping Huang ◽  
Weifang Liu ◽  
Shuting Kan ◽  
Penggao Liu ◽  
Hongtao Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document