Cobalt decorated nitrogen-doped carbon bowls as efficient electrocatalysts for the oxygen reduction reaction

2020 ◽  
Vol 56 (32) ◽  
pp. 4488-4491 ◽  
Author(s):  
Haobin Zhong ◽  
Changwei Shi ◽  
Jiantao Li ◽  
Ruohan Yu ◽  
Qiang Yu ◽  
...  

Cobalt decorated nitrogen-doped carbon bowls (Co@NCB) demonstrate better ORR performance than Pt/C in terms of half-wave potential and stability.

2022 ◽  
Author(s):  
Huixin Ma ◽  
Daijie Deng ◽  
Honghui Zhang ◽  
Feng Chen ◽  
Junchao Qian ◽  
...  

Nitrogen-coordinated single-atom manganese in multi-dimensional nitrogen-doped carbon electrocatalysts (Mn-NC) was successful constructed by combing two-dimensional nanosheets and one-dimensional nanofibers. The Mn-NC exhibited excellent oxygen reduction reaction catalytic activity with half-wave...


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1354
Author(s):  
Vera Bogdanovskaya ◽  
Inna Vernigor ◽  
Marina Radina ◽  
Vladimir Sobolev ◽  
Vladimir Andreev ◽  
...  

In order to develop highly efficient and stable catalysts for oxygen reduction reaction (ORR) that do not contain precious metals, it is necessary to modify carbon nanotubes (CNT) and define the effect of the modification on their activity in the ORR. In this work, the modification of CNTs included functionalization by treatment in NaOH or HNO3 (soft and hard conditions, respectively) and subsequent doping with nitrogen (melamine was used as a precursor). The main parameters that determine the efficiency of modified CNT in ORR are composition and surface area (XPS, BET), hydrophilic–hydrophobic surface properties (method of standard contact porosimetry (MSP)) and zeta potential (dynamic light scattering method). The activity of CNT in ORR was assessed following half-wave potential, current density within kinetic potential range and the electrochemically active surface area (SEAS). The obtained results show that the modification of CNT with oxygen-containing groups leads to an increase in hydrophilicity and, consequently, SEAS, as well as the total (overall) current. Subsequent doping with nitrogen ensures further increase in SEAS, higher zeta potential and specific activity in ORR, reflected in the shift of the half-wave potential by 150 mV for CNTNaOH-N and 110 mV for CNTHNO3-N relative to CNTNaOH and CNTHNO3, respectively. Moreover, the introduction of N into the structure of CNTHNO3 increases their corrosion stability.


2020 ◽  
Vol 7 (4) ◽  
pp. 946-952 ◽  
Author(s):  
Kaili Li ◽  
Daohao Li ◽  
Liangkui Zhu ◽  
Zhuangzhuang Gao ◽  
Qianrong Fang ◽  
...  

A high-performance electrocatalytic material was derived from a new bimetallic ZIF precursor, exhibiting excellent oxygen reduction reaction performance with a half-wave potential (E1/2) of 0.849 V, superior to that of commercial Pt/C.


Carbon ◽  
2021 ◽  
Author(s):  
Yuanjie Cao ◽  
Zhang Liu ◽  
Yuanting Tang ◽  
Chaojun Huang ◽  
Zhili Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document