scholarly journals A CeO2/ZrO2-TiO2 Catalyst for the Selective Catalytic Reduction of NOx with NH3

Catalysts ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 592 ◽  
Author(s):  
Wenpo Shan ◽  
Yang Geng ◽  
Yan Zhang ◽  
Zhihua Lian ◽  
Hong He

In this study, CeZr0.5TiaOx (with a = 0, 1, 2, 5, 10) catalysts were prepared by a stepwise precipitation approach for the selective catalytic reduction of NOx with NH3. When Ti was added, all of the Ce-Zr-Ti oxide catalysts showed much better catalytic performances than the CeZr0.5Ox. Particularly, the CeZr0.5Ti2Ox catalyst showed excellent activity for broad temperature range under high space velocity condition. Through the control of pH value and precipitation time during preparation, the function of the CeZr0.5Ti2Ox catalyst could be controlled and the structure with highly dispersed CeO2 (with redox functions) on the surface of ZrO2-TiO2 (with acidic functions) could be obtained. Characterizations revealed that the superior catalytic performance of the catalyst is associated with its outstanding redox properties and adsorption/activation functions for the reactants.

RSC Advances ◽  
2015 ◽  
Vol 5 (127) ◽  
pp. 104923-104931 ◽  
Author(s):  
Jixing Liu ◽  
Weiyu Song ◽  
Chi Xu ◽  
Jian Liu ◽  
Zhen Zhao ◽  
...  

A series of Cu/ZSM-5/SAPO-34 composite catalysts with varying ZSM-5 mass fraction were synthesized using a pre-seed method, and their catalytic performances were tested for selective catalytic reduction (SCR) of NO with NH3.


RSC Advances ◽  
2017 ◽  
Vol 7 (39) ◽  
pp. 24177-24187 ◽  
Author(s):  
Haidi Xu ◽  
Mengmeng Sun ◽  
Shuang Liu ◽  
Yuanshan Li ◽  
Jianli Wang ◽  
...  

The calcined temperature of the carrier obviously affected SCR activity of catalysts, WO3/Ce0.68Zr0.32O2-500 showed the best low-temperature NH3-SCR activity due to its more Lewis acid sites and stronger redox property.


2016 ◽  
Vol 6 (17) ◽  
pp. 6688-6696 ◽  
Author(s):  
Zhiming Liu ◽  
Yuxian Liu ◽  
Biaohua Chen ◽  
Tianle Zhu ◽  
Lingling Ma

The redox cycle (Ce4+ + Fe2+ ↔ Ce3+ + Fe3+) over the Fe–Ce–Ti catalyst contributes to the activation of NOx and NH3 and thus the formation of reaction intermediates, leading to the high catalytic performance for the NH3-SCR of NOx.


2018 ◽  
Vol 8 (12) ◽  
pp. 2430 ◽  
Author(s):  
Xinbo Zhu ◽  
Yaolin Wang ◽  
Yu Huang ◽  
Yuxiang Cai

In this work, a series of Ce-W-Ti catalysts were synthesized using a solution combustion method for the selective catalytic reduction (SCR) of NO with NH3 at low temperatures. The reaction performance of NH3-SCR of NO was significantly improved over the Ce-W-Ti catalysts compared to Ce0.4Ti and W0.4Ti catalysts, while Ce0.2W0.2Ti showed the best activity among all the samples. The Ce0.2W0.2Ti catalyst exhibited over 90% removal of NO and 100% N2 selectivity in the temperature range of 250–400 °C at a gas hourly space velocity (GHSV) of 120,000 mL·g−1·h−1. The Ce-W-Ti catalysts were characterized using N2 adsorption-desorption, X-ray diffraction, X-ray photoelectron spectrometry and temperature programmed desorption of NH3 to establish the structure-activity relationships of the Ce-W-Ti catalysts. The excellent catalytic performance of the Ce0.2W0.2Ti catalyst could be associated with the larger specific surface area, highly dispersed Ce and W species, increased amount of surface adsorbed oxygen (Oads) and enhanced total acidity on the catalyst surfaces.


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1423
Author(s):  
Marwa Saad ◽  
Agnieszka Szymaszek ◽  
Anna Białas ◽  
Bogdan Samojeden ◽  
Monika Motak

The goal of the study was to modify activated carbon (AC) with nitrogen groups and ceria and to test the obtained materials in low temperature selective catalytic reduction of nitrogen oxides. For that purpose, the starting AC was oxidized with HNO3 of various concentrations, modified with urea and doped with 0.5 wt.% of Ce. It was observed that the increased concentration of acid influenced the catalytic activity, since textural and surface chemistry of activated carbon was changed. The most active sample was that modified with 14 M HNO3 and it reached 96% of NO conversion at 300 °C. Additionally, the addition of Ce improved the catalytic performance of modified AC, and NO was reduced according to oxidation–reduction mechanism, characteristic for supported metal oxides. Nevertheless, the samples promoted with Ce emitted significantly higher amount of CO2 comparing to the non-promoted ones.


Sign in / Sign up

Export Citation Format

Share Document