scholarly journals Photocatalytic Hydrogen Evolution via Water Splitting: A Short Review

Catalysts ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 655 ◽  
Author(s):  
Yifan Zhang ◽  
Young-Jung Heo ◽  
Ji-Won Lee ◽  
Jong-Hoon Lee ◽  
Johny BajGai ◽  
...  

Photocatalytic H2 generation via water splitting is increasingly gaining attention as a viable alternative for improving the performance of H2 production for solar energy conversion. Many methods were developed to enhance photocatalyst efficiency, primarily by modifying its morphology, crystallization, and electrical properties. Here, we summarize recent achievements in the synthesis and application of various photocatalysts. The rational design of novel photocatalysts was achieved using various strategies, and the applications of novel materials for H2 production are displayed herein. Meanwhile, the challenges and prospects for the future development of H2-producing photocatalysts are also summarized.

CrystEngComm ◽  
2021 ◽  
Author(s):  
Zhihui Li ◽  
Hanchu Chen ◽  
Yanyan Li ◽  
Hui Wang ◽  
Yanru Liu ◽  
...  

Photocatalytic water-splitting with Z-scheme semiconductor heterojunctions is a promising way to achieve renewable solar fuels. Nevertheless, developing earth-abundant direct Z-scheme photocatalytic systems for efficient H2 production is still under-developed. In...


Author(s):  
Xueyou Gao ◽  
Deqian Zeng ◽  
Qingru Zeng ◽  
Zongzhuo Xie ◽  
Toyohisha Fujita ◽  
...  

Co-based cocatalysts have attracted considerable attention as potential alternatives for the noble-metal (Pt) in photocatalytic water splitting. However, the two-dimensional (2D) porous-structured Co-based cocatalysts toward photocatalytic hydrogen (H2) production application...


Author(s):  
Tingfeng Zhang ◽  
Xuefang Lan ◽  
Lili Wang ◽  
Jinsheng Shi ◽  
Kefeng Xiao

Developing high-performance and low-cost cocatalyst is crucial to realize large-scale H2 production using solar energy. Herein, a non-precious NixCoy-P@C core-shell nanoparticles (NPs) is synthesized as a high active cocatalyst for...


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Panlong Zhai ◽  
Mingyue Xia ◽  
Yunzhen Wu ◽  
Guanghui Zhang ◽  
Junfeng Gao ◽  
...  

AbstractRational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential for electrocatalytic materials in alkaline electrolyte. Moreover, well-defined surface structures lead to in-depth understanding of catalytic mechanisms. Herein, we report a single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets (Ru1/D-NiFe LDH). Under precise regulation of local coordination environments of catalytically active sites and the existence of the defects, Ru1/D-NiFe LDH delivers an ultralow overpotential of 18 mV at 10 mA cm−2 for hydrogen evolution reaction, surpassing the commercial Pt/C catalyst. Density functional theory calculations reveal that Ru1/D-NiFe LDH optimizes the adsorption energies of intermediates for hydrogen evolution reaction and promotes the O–O coupling at a Ru–O active site for oxygen evolution reaction. The Ru1/D-NiFe LDH as an ideal model reveals superior water splitting performance with potential for the development of promising water-alkali electrocatalysts.


Author(s):  
Dandan Zheng ◽  
Jingmin Zhou ◽  
Zhongpu Fang ◽  
Tobias Heil ◽  
Aleksandr Savateev ◽  
...  

Photocatalytic H2 production via water splitting holds great potential for the conversion of solar energy into renewable and storable chemical fuels in a sustainable manner, but this up-hill reaction is...


Author(s):  
Hanwen Xu ◽  
Jiawei Zhu ◽  
Pengyan Wang ◽  
Ding Chen ◽  
Chengtian Zhang ◽  
...  

Rational design and construction of high-efficiency bifunctional catalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for large-scale hydrogen production by water splitting. Herein, by a...


2020 ◽  
Vol 8 (35) ◽  
pp. 18310-18317 ◽  
Author(s):  
Yanjun Xiao ◽  
Yao Qian ◽  
Anqi Chen ◽  
Tian Qin ◽  
Fan Zhang ◽  
...  

Artificial photosynthetic systems store solar energy in chemical fuels via CO2 reduction or renewable hydrogen evolution from water splitting.


2018 ◽  
Vol 5 (12) ◽  
pp. 3074-3081 ◽  
Author(s):  
Yiping Su ◽  
Zhicheng Zhao ◽  
Shun Li ◽  
Fei Liu ◽  
Zuotai Zhang

A novel ZnO@ZnS/Ag@Ag2S quaternary nanojunction photocatalyst has been designed for efficient solar water splitting.


2018 ◽  
Author(s):  
Wolfgang Domcke ◽  
Johannes Ehrmaier ◽  
Andrzej L. Sobolewski

The photocatalytic splitting of water into molecular hydrogen and molecular oxygen with sunlight is the dream reaction for solar energy conversion. Since decades, transition-metal-oxide semiconductors and supramolecular organometallic structures have been extensively explored as photocatalysts for solar water splitting. More recently, polymeric carbon nitride materials consisting of triazine or heptazine building blocks have attracted considerable attention as hydrogen-evolution photocatalysts. The mechanism of hydrogen evolution with polymeric carbon nitrides is discussed throughout the current literature in terms of the familiar concepts developed for photoelectrochemical water splitting with semiconductors since the 1970s. We discuss in this perspective an alternative mechanistic paradigm for photoinduced water splitting with carbon nitrides, which focusses on the specific features of the photochemistry of aromatic N-heterocycles in aqueous environments. It is shown that a water molecule which is hydrogen-bonded to an N-heterocycle can be decomposed into hydrogen and hydroxyl radicals by two simple sequential photochemical reactions. This concept is illustrated by first-principles calculations of excited-state reaction paths and their energy profiles for hydrogen-bonded complexes of pyridine, triazine and heptazine with a water molecule. It is shown that the excited-state hydrogen-transfer and hydrogen-detachment reactions are essentially barrierless, in sharp contrast to water oxidation in the electronic ground state, where high barriers prevail. We also discuss in some detail the products of possible reactions of the highly reactive hydroxyl radicals with the chromophores. We hypothesize that the challenge of efficient solar hydrogen generation with carbon-nitride materials is less the decomposition of water as such, but rather the controlled recombination of the photogenerated radicals to the closed-shell products H2 and H2O2.


Sign in / Sign up

Export Citation Format

Share Document