scholarly journals Atomic Layer Deposition for Preparation of Highly Efficient Catalysts for Dry Reforming of Methane

Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 266 ◽  
Author(s):  
Soong Kim ◽  
Byeong Cha ◽  
Shahid Saqlain ◽  
Hyun Seo ◽  
Young Kim

In this article, the structural and chemical properties of heterogeneous catalysts prepared by atomic layer deposition (ALD) are discussed. Oxide shells can be deposited on metal particles, forming shell/core type catalysts, while metal nanoparticles are incorporated into the deep inner parts of mesoporous supporting materials using ALD. Both structures were used as catalysts for the dry reforming of methane (DRM) reaction, which converts CO2 and CH4 into CO and H2. These ALD-prepared catalysts are not only highly initially active for the DRM reaction but are also stable for long-term operation. The origins of the high catalytic activity and stability of the ALD-prepared catalysts are thoroughly discussed.

2020 ◽  
Vol 10 (24) ◽  
pp. 8283-8294
Author(s):  
Euiseob Yang ◽  
Eonu Nam ◽  
Jihyeon Lee ◽  
Hojeong Lee ◽  
Eun Duck Park ◽  
...  

To mitigate catalyst deactivation during the dry reforming of methane, Ni/CeO2 catalysts composed of monodisperse Ni nanoparticles supported on CeO2 nanorods are designed and coated with Al2O3 layers by atomic layer deposition.


2015 ◽  
Vol 492 ◽  
pp. 107-116 ◽  
Author(s):  
Troy D. Gould ◽  
Matthew M. Montemore ◽  
Alia M. Lubers ◽  
Lucas D. Ellis ◽  
Alan W. Weimer ◽  
...  

2020 ◽  
Vol 10 (10) ◽  
pp. 3212-3222 ◽  
Author(s):  
Baitang Jin ◽  
Zeyu Shang ◽  
Shiguang Li ◽  
Ying-Bing Jiang ◽  
Xuehong Gu ◽  
...  

CeO2 can significantly enhance the catalytic performance of Ni/Al2O3 catalysts prepared by atomic layer deposition for dry reforming of methane.


2021 ◽  
Vol 13 (13) ◽  
pp. 15761-15773
Author(s):  
Maxime Hallot ◽  
Borja Caja-Munoz ◽  
Clement Leviel ◽  
Oleg I. Lebedev ◽  
Richard Retoux ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 450 ◽  
Author(s):  
Miguel Martín-Sómer ◽  
Dominik Benz ◽  
J. Ruud van Ommen ◽  
Javier Marugán

This work presents the evaluation of the photocatalytic activity of P25 TiO2 particles, coated with SiO2, using atomic layer deposition (ALD) for the photocatalytic removal of methylene blue, oxidation of methanol and inactivation of Escherichia coli bacteria in water and its comparative evaluation with bare P25 TiO2. Two different reactor configurations were used, a slurry reactor with the catalyst in suspension, and a structured reactor with the catalyst immobilized in macroporous foams, that enables the long-term operation of the process in continuous mode, without the necessity of separation of the particles. The results show that the incorporation of SiO2 decreases the efficiency of the photocatalytic oxidation of methanol, whereas a significant improvement in the removal of methylene blue is achieved, and no significant changes are observed in the photocatalytic inactivation of bacteria. Adsorption tests showed that the improvements, observed in the removal of methylene blue by the incorporation of SiO2, was mainly due to an increase in its adsorption. The improvement in the adsorption step as part of the global photocatalytic process led to a significant increase in its removal efficiency. Similar conclusions were reached for bacterial inactivation where the loss of photocatalytic efficiency, suggested by the methanol oxidation tests, was counteracted with a better adherence of bacteria to the catalyst that improved its elimination. With respect to the use of macroporous foams as support, a reduction in the photocatalytic efficiency is observed, as expected from the decrease in the available surface area. Nevertheless, this lower efficiency can be counteracted by the operational improvement derived from the easy catalyst reuse.


Sign in / Sign up

Export Citation Format

Share Document