scholarly journals Multitarget Evaluation of the Photocatalytic Activity of P25-SiO2 Prepared by Atomic Layer Deposition

Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 450 ◽  
Author(s):  
Miguel Martín-Sómer ◽  
Dominik Benz ◽  
J. Ruud van Ommen ◽  
Javier Marugán

This work presents the evaluation of the photocatalytic activity of P25 TiO2 particles, coated with SiO2, using atomic layer deposition (ALD) for the photocatalytic removal of methylene blue, oxidation of methanol and inactivation of Escherichia coli bacteria in water and its comparative evaluation with bare P25 TiO2. Two different reactor configurations were used, a slurry reactor with the catalyst in suspension, and a structured reactor with the catalyst immobilized in macroporous foams, that enables the long-term operation of the process in continuous mode, without the necessity of separation of the particles. The results show that the incorporation of SiO2 decreases the efficiency of the photocatalytic oxidation of methanol, whereas a significant improvement in the removal of methylene blue is achieved, and no significant changes are observed in the photocatalytic inactivation of bacteria. Adsorption tests showed that the improvements, observed in the removal of methylene blue by the incorporation of SiO2, was mainly due to an increase in its adsorption. The improvement in the adsorption step as part of the global photocatalytic process led to a significant increase in its removal efficiency. Similar conclusions were reached for bacterial inactivation where the loss of photocatalytic efficiency, suggested by the methanol oxidation tests, was counteracted with a better adherence of bacteria to the catalyst that improved its elimination. With respect to the use of macroporous foams as support, a reduction in the photocatalytic efficiency is observed, as expected from the decrease in the available surface area. Nevertheless, this lower efficiency can be counteracted by the operational improvement derived from the easy catalyst reuse.

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1456
Author(s):  
Bozhidar I. Stefanov ◽  
Blagoy S. Blagoev ◽  
Lars Österlund ◽  
Boriana R. Tzaneva ◽  
George V. Angelov

We report on the photocatalytic activity of ZnO layers deposited by atomic layer deposition on a porous anodic aluminum oxide substrate with hexagonal pore symmetry and varied pore dimensions. ZnO/Al2O3 composites were prepared with pore diameters in the range 93–134 nm and interpore distance in the range 185–286 nm, and their photocatalytic activity was measured for gas-phase photocatalytic oxidation of acetaldehyde at varying UV illumination intensities (0.08–3.94 mW cm−2). The results show that substrates with narrower pore diameters (<115 nm, in the case of this study) have a detrimental effect on the photocatalyst performance, despite their higher effective surface. The results are explained on the basis of limited mass transfer inside the porous structure and can be used as a guideline in the purposeful design of photocatalysts with a nanoporous or nanotubular structure.


2017 ◽  
Vol 40 (6) ◽  
pp. 1225-1230 ◽  
Author(s):  
M M M Contreras Turrubiartes ◽  
E López Luna ◽  
J L Enriquez-Carrejo ◽  
A Pedroza Rodriguez ◽  
J C Salcedo Reyes ◽  
...  

Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 266 ◽  
Author(s):  
Soong Kim ◽  
Byeong Cha ◽  
Shahid Saqlain ◽  
Hyun Seo ◽  
Young Kim

In this article, the structural and chemical properties of heterogeneous catalysts prepared by atomic layer deposition (ALD) are discussed. Oxide shells can be deposited on metal particles, forming shell/core type catalysts, while metal nanoparticles are incorporated into the deep inner parts of mesoporous supporting materials using ALD. Both structures were used as catalysts for the dry reforming of methane (DRM) reaction, which converts CO2 and CH4 into CO and H2. These ALD-prepared catalysts are not only highly initially active for the DRM reaction but are also stable for long-term operation. The origins of the high catalytic activity and stability of the ALD-prepared catalysts are thoroughly discussed.


Sign in / Sign up

Export Citation Format

Share Document