Continuous Flow Mode Biocatalytic Transamination Using Macrocellular Silica Monoliths: Optimizing Support Functionalisation and Enzyme Grafting

Author(s):  
Ludivine van den Biggelaar ◽  
Patrice Soumillion ◽  
Damien Debecker

<div>Transaminases are immobilized onto macrocellular silica monoliths and used for carrying a continuous flow mode transamination reaction. Monoliths were prepared via an emulsion-templated sol-gel method and functionalized by amino-moieties (APTES) in order to covalently immobilize the enzymes, using glutaraldehyde as a cross-linking agent. In order to obtain higher performance and improved reproducibility, we investigate the key parameters of APTES functionalization and of enzyme grafting. Four functionalization protocols were studied. It is shown that controlling the moisture levels in monolith and in the functionalisation solution led to a 3-fold increase in activity as compared to the previously reported data, and greatly improved the reproducibility. Additionally, we report a strong beneficial effect of running the enzyme immobilization at room temperature instead of 4°C, further enhancing the obtained activity. Finally, the popular method which consists in stabilizing the covalent attachment of the enzyme by reducing the imine bonds formed between the enzyme and the functionalized surface was investigated. We highlight a strong enzyme deactivation caused by cyanoborohydride, making this strategy irrelevant in this case. All in all, the improvements presented here for enzyme immobilization in macrocellular silica monoliths, lead to the preparation of more active materials for continuous flow mode biocatalysis.<br></div>

2019 ◽  
Author(s):  
Ludivine van den Biggelaar ◽  
Patrice Soumillion ◽  
Damien Debecker

<div>Transaminases are immobilized onto macrocellular silica monoliths and used for carrying a continuous flow mode transamination reaction. Monoliths were prepared via an emulsion-templated sol-gel method and functionalized by amino-moieties (APTES) in order to covalently immobilize the enzymes, using glutaraldehyde as a cross-linking agent. In order to obtain higher performance and improved reproducibility, we investigate the key parameters of APTES functionalization and of enzyme grafting. Four functionalization protocols were studied. It is shown that controlling the moisture levels in monolith and in the functionalisation solution led to a 3-fold increase in activity as compared to the previously reported data, and greatly improved the reproducibility. Additionally, we report a strong beneficial effect of running the enzyme immobilization at room temperature instead of 4°C, further enhancing the obtained activity. Finally, the popular method which consists in stabilizing the covalent attachment of the enzyme by reducing the imine bonds formed between the enzyme and the functionalized surface was investigated. We highlight a strong enzyme deactivation caused by cyanoborohydride, making this strategy irrelevant in this case. All in all, the improvements presented here for enzyme immobilization in macrocellular silica monoliths, lead to the preparation of more active materials for continuous flow mode biocatalysis.<br></div>


Author(s):  
Ludivine van den Biggelaar ◽  
Patrice Soumillion ◽  
Damien P. Debecker

&omega;-Transaminases have been immobilized on macrocellular silica monoliths and used as heterogeneous biocatalysts in a continuous flow mode enantioselective transamination reaction. The support was prepared by a sol-gel method based on emulsion-templating. The enzyme was immobilized on the structured silica monoliths both by adsorption, and by covalent grafting using amino-functionalized silica monoliths and glutaraldehyde as a coupling agent. A simple reactor set-up based on the use of a heat-shrinkable Teflon tube is presented and successfully used for the continuous flow kinetic resolution of a chiral amine, 4-bromo-&alpha;-methylbenzylamine. The porous structure of the supports ensures effective mass transfer and the reactor works in the plug flow regime without preferential flow paths. When immobilized in the monolith and used in the flow reactor, transaminases retain their activity and their enantioselectivity. The solid biocatalyst is also shown to be stable both on stream and during storage. These essential features pave the way to the successful development of an environmentally friendly process for chiral amines production.


Author(s):  
Ludivine van den Biggelaar ◽  
Patrice Soumillion ◽  
Damien P. Debecker

&omega;-Transaminases have been immobilized on macrocellular silica monoliths and used as heterogeneous biocatalysts in a continuous flow mode enantioselective transamination reaction. The support was prepared by a sol-gel method based on emulsion templating. The enzyme was immobilized on the structured silica monoliths both by adsorption, and by covalent grafting using amino-functionalized silica monoliths and glutaraldehyde as a coupling agent. A simple reactor set-up based on the use of a heat-shrinkable Teflon tube is presented and successfully used for the continuous flow kinetic resolution of a chiral amine, 4-bromo-&alpha;-methylbenzylamine. The porous structure of the supports ensures effective mass transfer and the reactor works in the plug flow regime without preferential flow paths. When immobilized in the monolith and used in the flow reactor, transaminases retain their activity and their enantioselectivity. The solid biocatalyst is also shown to be stable both on stream and during storage. These essential features pave the way to the successful development of an environmentally friendly process for chiral amines production.


Catalysts ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 438 ◽  
Author(s):  
Zsófia Molnár ◽  
Emese Farkas ◽  
Ágnes Lakó ◽  
Balázs Erdélyi ◽  
Wolfgang Kroutil ◽  
...  

Immobilization of transaminases creates promising biocatalysts for production of chiral amines in batch or continuous-flow mode reactions. E. coli cells containing overexpressed transaminases of various selectivities and hollow silica microspheres as supporting agent were immobilized by an improved sol-gel process to produce immobilized transaminase biocatalysts with suitable stability and mechanical properties for continuous-flow applications. The immobilized cell-based transaminase biocatalyst proved to be durable and easy-to-use in kinetic resolution of four racemic amines 1a–d. The batch and continuous-flow mode kinetic resolutions with transaminase biocatalyst of opposite stereopreference provided access to both enantiomers of the corresponding amines. By using the most suitable immobilized transaminase biocatalysts, this study describes the first transaminase-based approach for the production of both pure enantiomers of 1-(3,4-dimethoxyphenyl)ethan-1-amine 1d.


2021 ◽  
Vol 3 ◽  
Author(s):  
Haseeb Ullah Khan Jatoi ◽  
Michael Goepel ◽  
David Poppitz ◽  
Richard Kohns ◽  
Dirk Enke ◽  
...  

Sol-gel-based silica monoliths with hierarchical mesopores/macropores are promising catalyst support and flow reactors. Here, we report the successful preparation of cylindrically shaped Pt-loaded silica monoliths (length: 2 cm, diameter: 0.5 cm) with a variable mean macropore width of 1, 6, 10, or 27 μm at a fixed mean mesopore width of 17 nm. The Pt-loaded monolithic catalysts were housed in a robust cladding made of borosilicate glass for use as a flow reactor. The monolithic reactors exhibit a permeability as high as 2 μm2 with a pressure drop below 9 bars over a flow rate range of 2–20 cm3 min−1 (solvent: water). The aqueous-phase hydrogenation of p-nitrophenol to p-aminophenol with NaBH4 as a reducing agent was used as a test reaction to study the influence of mass transfer on catalytic activity in continuous flow. No influence of flow rate on conversion at a fixed contact time of 2.6 s was observed for monolithic catalysts with mean macropore widths of 1, 10, or 27 µm. As opposed to earlier studies conducted at much lower flow velocities, this strongly indicates the absence of external mass-transfer limitations or stagnant layer formation in the macropores of the monolithic catalysts.


RSC Advances ◽  
2017 ◽  
Vol 7 (83) ◽  
pp. 52977-52987 ◽  
Author(s):  
Mădălina Elena Moisă ◽  
Cristina Georgiana Spelmezan ◽  
Cristina Paul ◽  
Judith Hajnal Bartha-Vári ◽  
László Csaba Bencze ◽  
...  

The EKR of some heteroaromatic secondary ethanols with tailored sol–gel immobilized lipases in batch and continuous-flow reactors was studied. The productivity in continuous-flow mode is higher than in batch mode.


2019 ◽  
Author(s):  
Valentin Smeets ◽  
Ludivine van den Biggelaar ◽  
Tarek Barakat ◽  
Eric M. Gaigneaux ◽  
Damien Debecker

Self-standing macrocellular titanosilicate monolith foams are obtained using a one-pot sol-gel route and show excellent performance in the epoxidation of cyclohexene. Thanks to the High Internal Phase Emulsion (HIPE) templating method, the materials feature a high void fraction, a hierarchically porous texture and good mechanical strength. Highly dispersed Ti species can be incorporated in tetrahedral coordination the silica matrix. These characteristics allow the obtained ‘SiTi(HIPE)’ materials to reach high catalytic turnover in the epoxidation of cyclohexene. The monoliths can advantageously be used to run the reaction in continuous flow mode.<br>


2010 ◽  
Vol 17 (01) ◽  
pp. 51-58 ◽  
Author(s):  
JEONG-HUN JU ◽  
YOUNG-MIN CHUNG ◽  
YU-RIM BAK ◽  
MOON-JIN HWANG ◽  
KWANG-SUN RYU

Carbon nano-coated LiNi 0.8 Co 0.15 Al 0.05 O 2/ C (LNCAO/C) cathode-active materials were prepared by a sol–gel method and investigated as the cathode material for lithium ion batteries. Electrochemical properties including the galvanostatic charge–discharge ability and cyclic voltammogram behavior were measured. Cyclic voltammetry (2.7–4.8 V) showed that the carbon nano-coating improved the "formation" of the LNCAO electrode, which was related to the increased electronic conductivity between the primary particles. The carbon nano-coated LNCAO/C exhibited good electrochemical performance at high C -rate. Also, the thermal stability at a highly oxidized state of the carbon nano-coated LNCAO was remarkably enhanced. The carbon nano-coating layer can serve as a physical and/or (electro-)chemical protection shell for the underlying LNCAO, which is attributed to an increase of the grain connectivity (physical part) and also to the protection of metal oxide from chemical reactions (chemical part).


Sign in / Sign up

Export Citation Format

Share Document