scholarly journals Biodiesel Production Using Bauxite in Low-Cost Solid Base Catalyst Precursors

Catalysts ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1064 ◽  
Author(s):  
Yong-Ming Dai ◽  
Cheng-Hsuan Hsieh ◽  
Jia-Hao Lin ◽  
Fu-Hsuan Chen ◽  
Chiing-Chang Chen

Investigation was conducted on bauxite mixed with Li2CO3 as alkali metal catalysts for biodiesel production. Bauxite contains a high percentage of Si and Al compounds among products. Because of the high expense of commercial materials (SiO2, Al2O3) that makes them not economical, the method was very recently improved by replacing commercial materials with Si and Al from bauxite. This is one of the easiest methods for preparing heterogeneous transesterification catalysts, through one-pot blending, grinding bauxite with Li2CO3, and heating at 800 °C for 4 h. The prepared solid-base alkali metal catalyst was characterized in terms of its physical and chemical properties using X-ray powder diffraction and field-emission scanning electron microscopy (FE-SEM). The optimal conditions for the transesterification procedure are to mix methanol oil by molar ratio 9:1, under 65 °C, with catalyst amount 3 wt.%. The procedure is suitable for transesterifying oil to fatty acid methyl ester in the 96% range.

2013 ◽  
Vol 834-836 ◽  
pp. 550-554 ◽  
Author(s):  
Warakom Suwanthai ◽  
Vittaya Punsuvon ◽  
Pilanee Vaithanomsat

In this research, calcium methoxide was synthesized as solid base catalyst from quick lime for biodiesel production. The catalyst was further characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), attenuated total reflection fourier transform (ATR-FTIR) and Energy-dispersive X-ray spectroscopies (EDX) to evaluate its performance. The transesterification of refined palm oil using calcium methoxide and the process parameters affecting the fatty acid methyl ester (FAME) content such as catalyst concentration, methanol:oil molar ratio and reaction time were investigated. The results showed that the FAME content at 97% was achieved within 3 h using 3 %wt catalyst loading, 12:1 methanol:oil molar ratio and 65 °C reaction temperature. The result of FAME suggested calcium methoxide was the promising solid catalyst for substitution of the conventional liquid catalyst.


2010 ◽  
Vol 148-149 ◽  
pp. 794-798 ◽  
Author(s):  
Xiao Hua Liu ◽  
Hai Xin Bai ◽  
Dong Jie Zhu ◽  
Geng Cao

In this paper, calcined river-snail shell was used as a novel solid base catalyst in the transesterification of soybean oil with methanol for biodiesel production. The calcined river-snail shell was characterized using field emission scanning electron microscope and X-ray diffraction. Effects of transesterification process variables were investigated. The results indicated that river-snail shell calcined at 800 °C catalyzed the transesterification of soybean oil for biodiesel with a yield over 98 % under the conditions including catalyst of 3.0% (w/w), a molar ratio of methanol/oil of 9:1, reaction time of 3 h, and reaction temperature of 65 °C. As a low-cost green catalyst, calcined river-snail shell could not only minimize the environmental wastes resulted from the solid shell, but also reduce the production costs of biodiesel.


2020 ◽  
Author(s):  
Shayan Jalalmanesh ◽  
Mohammad Kazemeini ◽  
Mohamad Hosein Rahmani ◽  
Milad Zehtab Salmasi

<div><div><div><div><p>Kaolin clay material was loaded with potassium carbonate by impregnation method as a novel effective and economical heterogeneous catalyst for biodiesel production of sunflower oil via the transesterification reaction. The structural and chemical properties of the produced catalysts were analyzed by several characterization tests including the BET-BJH, XRD, SEM and FTIR. Influence of the K2CO3 impregnation level was examined by comparing the catalytic activity of different produced catalysts. To expand the efficiency of transesterification reaction, parameters of reaction were optimized including; the molar ratio between methanol and oil, concentration of catalyst, and duration of the reaction. The highest yield of biodiesel over the K2CO3/kaolin catalyst was around 95.3 ± 1.2%. It was achieved using kaolin supports impregnated with 20 wt.% of K2CO3. The optimum reaction conditions were found to be catalyst reactor loading of 5 wt.%, reaction temperature of 65 °C, methanol: oil molar ratio of 6:1 and reaction duration time of 4 h.</p></div></div></div></div>


2012 ◽  
Vol 77 (6) ◽  
pp. 815-832 ◽  
Author(s):  
Zlatica Predojevic ◽  
Biljana Skrbic ◽  
Natasa Djurisic-Mladenovic

The purpose of this work is to characterize biodiesel (i.e. methyl esters, MEs) produced from linoleic and oleic sunflower oils (LSO and OSO, respectively) by alkali transesterification with methanol and CaO as a heterogeneous catalyst under different reaction parameters. The parameters investigated were the methanol/oil molar ratio (4.5:1, 6:1, 7.5:1, 9:1 and 12:1) and the mass ratio of CaO to oil (2% and 3%). The physical and chemical properties of the feedstocks and MEs, like density at 15oC, kinematic viscosity at 40oC, acid value, iodine value, saponification value, cetane index, fatty acid (methyl ester) composition, were determined in order to investigate the effects of LSO and OSO properties and reaction parameters on the product characteristics, yields and purity. The properties of feedstock had decisive effect on the physical and chemical properties of MEs as majority of them did not differ significantly under studied reaction conditions. The MEs produced generally met the criteria required for commercial biodiesel; in fact, the only exception was in the case of iodine value of ME produced from LSO. The product yields only slightly changed with the applied conditions; the highest yield (99.22%) was obtained for ME-LSO produced at 6 mol% methanol to oil ratio, while the lowest one (93.20%) was for ME-OSO produced under the lowest methanol/oil molar ratio (4.5:1). The applied catalyst amounts had similar influence on the oil conversion to biodiesel. The yields of ME-LSOs were in general somewhat higher than those obtained for ME-OSOs under the same conditions, which was attributed to the influence of the respective feedstocks' acid value and viscosity.


2020 ◽  
Author(s):  
Shayan Jalalmanesh ◽  
Mohammad Kazemeini ◽  
Mohamad Hosein Rahmani ◽  
Milad Zehtab Salmasi

<div><div><div><div><p>Kaolin clay material was loaded with potassium carbonate by impregnation method as a novel effective and economical heterogeneous catalyst for biodiesel production of sunflower oil via the transesterification reaction. The structural and chemical properties of the produced catalysts were analyzed by several characterization tests including the BET-BJH, XRD, SEM and FTIR. Influence of the K2CO3 impregnation level was examined by comparing the catalytic activity of different produced catalysts. To expand the efficiency of transesterification reaction, parameters of reaction were optimized including; the molar ratio between methanol and oil, concentration of catalyst, and duration of the reaction. The highest yield of biodiesel over the K2CO3/kaolin catalyst was around 95.3 ± 1.2%. It was achieved using kaolin supports impregnated with 20 wt.% of K2CO3. The optimum reaction conditions were found to be catalyst reactor loading of 5 wt.%, reaction temperature of 65 °C, methanol: oil molar ratio of 6:1 and reaction duration time of 4 h.</p></div></div></div></div>


2020 ◽  
Author(s):  
Shayan Jalalmanesh ◽  
Mohammad Kazemeini ◽  
mohamad hosein rahmani ◽  
Milad Zehtab Salmasi

<div><div><div><div><p>Kaolin clay material was loaded with potassium carbonate by impregnation method as a novel effective and economical heterogeneous catalyst for biodiesel production of sunflower oil via the transesterification reaction. The structural and chemical properties of the produced catalysts were analyzed by several characterization tests including the BET-BJH, XRD, SEM and FTIR. Influence of the K2CO3 impregnation level was examined by comparing the catalytic activity of different produced catalysts. To expand the efficiency of transesterification reaction, parameters of reaction were optimized including; the molar ratio between methanol and oil, concentration of catalyst, and duration of the reaction. The highest yield of biodiesel over the K2CO3/kaolin catalyst was around 95.3 ± 1.2%. It was achieved using kaolin supports impregnated with 20 wt.% of K2CO3. The optimum reaction conditions were found to be catalyst reactor loading of 5 wt.%, reaction temperature of 65 °C, methanol: oil molar ratio of 6:1 and reaction duration time of 4 h.</p></div></div></div></div>


2017 ◽  
Vol 744 ◽  
pp. 506-510 ◽  
Author(s):  
Achanai Buasri ◽  
Pittayarat Chaibundit ◽  
Metawee Kuboonprasert ◽  
Arnan Silajan ◽  
Vorrada Loryuenyong

Nowadays, utilization of biomass is considered to have the potential to solve many environmental problems and provide a source of renewable and environmentally-friendly energy. Research on green and low cost catalysts is needed for economical production of biodiesel. The goal of this work was to test potassium iodide (KI)-impregnated calcined razor clam shell as a heterogeneous catalyst for transesterification of Jatropha curcas oil in a microwave reactor. The effects of different preparation conditions on biodiesel yield were investigated and the structure of the catalyst was characterized. The raw material and the resulting solid catalyst were characterized using X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM) and the Brunauer-Emmett-Teller (BET) method. The waste shell displays a typical layered architecture. The sample had the surface area 16.51 m2/g, pore diameter 22.18 nm and pore volume 0.14 cm3/g, and presented a uniform pore size. The highest fatty acid methyl ester (FAME) yield of 96.99% for potassium iodide-calcium oxide (KI-CaO) catalyst was obtained under the optimum condition (reaction time 5 min, microwave power 600 W, methanol/oil molar ratio 12:1, and catalyst dosage 3 wt%). It was showing potential applications of catalyst in biodiesel industry.


2020 ◽  
Author(s):  
Shayan Jalalmanesh ◽  
Mohammad Kazemeini ◽  
mohamad hosein rahmani ◽  
milad zehtab

<div><div><div><div><p>Kaolin clay material was loaded with potassium carbonate by impregnation method as a novel effective and economical heterogeneous catalyst for biodiesel production of sunflower oil via the transesterification reaction. The structural and chemical properties of the produced catalysts were analyzed by several characterization tests including the BET-BJH, XRD, SEM and FTIR. Influence of the K2CO3 impregnation level was examined by comparing the catalytic activity of different produced catalysts. To expand the efficiency of transesterification reaction, parameters of reaction were optimized including; the molar ratio between methanol and oil, concentration of catalyst, and duration of the reaction. The highest yield of biodiesel over the K2CO3/kaolin catalyst was around 95.3 ± 1.2%. It was achieved using kaolin supports impregnated with 20 wt.% of K2CO3. The optimum reaction conditions were found to be catalyst reactor loading of 5 wt.%, reaction temperature of 65 °C, methanol: oil molar ratio of 6:1 and reaction duration time of 4 h.</p></div></div></div></div>


2021 ◽  
Vol 10 ◽  
Author(s):  
Evaldo B. M. Júnior ◽  
Fernando B. Neves ◽  
Samuel Q. Lopes ◽  
Fabrício H. Holanda ◽  
Tiago M. Souza ◽  
...  

Background: Biodiesel has been shown to be effectively produced by immobilized enzymatic catalysts. The selection of support material is a prominent factor for obtaining an efficient lipase. Silk fibroin (SF) is a natural polymer, produced by glands of some arthropods, especially by the Bombyx mor, attracting attention for immobilization lipase attention. Objective: This paper presents a novel method to obtain silk microfibers (SMF) from Oxone® salt in water, used as support for Amano AK lipase from Pseudomonas fluorescens in biodiesel production from deodorization distillate of palm oil (DDPO). Method: The oxone® salt in the presence of Ca2+ ions act as a mineralizing agent in the peptide bonds present in silk fibroin, altering some of its physical and chemical properties, such as zeta potential, crystallinity, micro-morphology, infrared spectroscopic profile, and showing formation or absence of SF original connections. Results: The modified support was tested as a support alternative for the immobilization of Amano AK lipase from Pseudomonas fluorescens. Enzyme activity values indicated that lipase immobilization on SMF was efficient as a heterogeneous catalyst in the esterification of DDPO (deodorization distillate palm oil). Conclusion: The effect of some reaction parameters, such as catalyst concentration, molar ratio, temperature, and reaction time, was studied to optimize the conditions for maximum conversion of DDPO (40.5%).


2020 ◽  
Author(s):  
Shayan Jalalmanesh ◽  
Mohammad Kazemeini ◽  
mohamad hosein rahmani ◽  
milad zehtab

<div><div><div><div><p>Kaolin clay material was loaded with potassium carbonate by impregnation method as a novel effective and economical heterogeneous catalyst for biodiesel production of sunflower oil via the transesterification reaction. The structural and chemical properties of the produced catalysts were analyzed by several characterization tests including the BET-BJH, XRD, SEM and FTIR. Influence of the K2CO3 impregnation level was examined by comparing the catalytic activity of different produced catalysts. To expand the efficiency of transesterification reaction, parameters of reaction were optimized including; the molar ratio between methanol and oil, concentration of catalyst, and duration of the reaction. The highest yield of biodiesel over the K2CO3/kaolin catalyst was around 95.3 ± 1.2%. It was achieved using kaolin supports impregnated with 20 wt.% of K2CO3. The optimum reaction conditions were found to be catalyst reactor loading of 5 wt.%, reaction temperature of 65 °C, methanol: oil molar ratio of 6:1 and reaction duration time of 4 h.</p></div></div></div></div>


Sign in / Sign up

Export Citation Format

Share Document