scholarly journals Evaluation of Production Protocols for the Generation of NY-ESO-1-Specific T Cells

Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 152
Author(s):  
Wenjie Gong ◽  
Lei Wang ◽  
Sophia Stock ◽  
Ming Ni ◽  
Maria-Luisa Schubert ◽  
...  

NY-ESO-1-specific T cells have shown promising activity in the treatment of soft tissue sarcoma (STS). However, standardized protocols for their generation are limited. Particularly, cost-effectiveness considerations of cell production protocols are of importance for conducting clinical studies. In this study, two different NY-ESO-1-specific T cell production protocols were compared. Major differences between protocols 1 and 2 include culture medium, interleukin-2 and retronectin concentrations, T cell activation strategy, and the transduction process. NY-ESO-1-specific T cells generated according to the two protocols were investigated for differences in cell viability, transduction efficiency, T cell expansion, immunophenotype as well as functionality. NY-ESO-1-specific T cells showed similar viability and transduction efficiency between both protocols. Protocol 1 generated higher absolute numbers of NY-ESO-1-specific T cells. However, there was no difference in absolute numbers of NY-ESO-1-specific T cell subsets with less-differentiated phenotypes accounting for efficient in vivo expansion and engraftment. Furthermore, cells generated according to protocol 1 displayed higher capacity of TNF-α generation, but lower cytotoxic capacities. Overall, both protocols provided functional NY-ESO-1-specific T cells. However, compared to protocol 1, protocol 2 is advantageous in terms of cost-effectiveness. Cell production protocols should be designed diligently to achieve a cost-effective cellular product for further clinical evaluation.

1994 ◽  
Vol 180 (3) ◽  
pp. 1159-1164 ◽  
Author(s):  
D Unutmaz ◽  
P Pileri ◽  
S Abrignani

We investigated whether human resting T cells could be activated to proliferate and display effector function in the absence of T cell receptor occupancy. We report that combination of interleukin 2 (IL-2), tumor necrosis factor alpha, and IL-6 activated highly purified naive (CD45RA+) and memory (CD45RO+) resting CD4+ T cells to proliferate. Under this condition, memory resting T cells could also display effector function as measured by lymphokine synthesis and help for immunoglobulin production by B cells. This novel Ag-independent pathway of T cell activation may play an important role in vivo in recruiting effector T cells at the site of immune response and in maintaining the clonal size of memory T cells in the absence of antigenic stimulation. Moreover, cytokines can induce proliferation of naive T cells without switch to memory phenotype and this may help the maintenance of the peripheral pool of naive T cells.


Blood ◽  
2000 ◽  
Vol 96 (6) ◽  
pp. 2181-2190 ◽  
Author(s):  
Maria Paola Martelli ◽  
Huamao Lin ◽  
Weiguo Zhang ◽  
Lawrence E. Samelson ◽  
Barbara E. Bierer

Abstract Activation of T cells can be initiated through cell surface molecules in addition to the T-cell receptor-CD3 (TCR-CD3) complex. In human T cells, ligation of the CD2 molecule by mitogenic pairs of anti-CD2 monoclonal antibodies activates T cells via biochemical signaling pathways similar but not identical to those elicited on TCR engagement. This study describes a key role for the p36/38 membrane adapter protein linker for T cell activation (LAT) in CD2-mediated T-cell activation. Following ligation of CD2 on the surface of the Jurkat T-cell line and human purified T cells, LAT was tyrosine phosphorylated and shown to associate in vivo with a number of other tyrosine phosphorylated proteins including PLCγ-1, Grb-2, and SLP-76. Using Jurkat cell lines deficient in ZAP70/Syk (P116) or LAT (ANJ3) expression, CD2-dependent PLCγ-1 and SLP-76 tyrosine phosphorylation required expression both of ZAP70 or Syk and of LAT. As predicted, the absence of either LAT or ZAP70/Syk kinases correlated with a defect in the induction of nuclear factor of activated T cells (NFAT) transcriptional activity, activation of the interleukin-2 promoter, and ERK phosphorylation following CD2 stimulation. These data suggest that LAT is an adapter protein important for the regulation of CD2-mediated T-cell activation.


Blood ◽  
2000 ◽  
Vol 96 (6) ◽  
pp. 2181-2190 ◽  
Author(s):  
Maria Paola Martelli ◽  
Huamao Lin ◽  
Weiguo Zhang ◽  
Lawrence E. Samelson ◽  
Barbara E. Bierer

Activation of T cells can be initiated through cell surface molecules in addition to the T-cell receptor-CD3 (TCR-CD3) complex. In human T cells, ligation of the CD2 molecule by mitogenic pairs of anti-CD2 monoclonal antibodies activates T cells via biochemical signaling pathways similar but not identical to those elicited on TCR engagement. This study describes a key role for the p36/38 membrane adapter protein linker for T cell activation (LAT) in CD2-mediated T-cell activation. Following ligation of CD2 on the surface of the Jurkat T-cell line and human purified T cells, LAT was tyrosine phosphorylated and shown to associate in vivo with a number of other tyrosine phosphorylated proteins including PLCγ-1, Grb-2, and SLP-76. Using Jurkat cell lines deficient in ZAP70/Syk (P116) or LAT (ANJ3) expression, CD2-dependent PLCγ-1 and SLP-76 tyrosine phosphorylation required expression both of ZAP70 or Syk and of LAT. As predicted, the absence of either LAT or ZAP70/Syk kinases correlated with a defect in the induction of nuclear factor of activated T cells (NFAT) transcriptional activity, activation of the interleukin-2 promoter, and ERK phosphorylation following CD2 stimulation. These data suggest that LAT is an adapter protein important for the regulation of CD2-mediated T-cell activation.


2002 ◽  
Vol 195 (12) ◽  
pp. 1613-1624 ◽  
Author(s):  
Stefanie Scheu ◽  
Judith Alferink ◽  
Tobias Pötzel ◽  
Winfried Barchet ◽  
Ulrich Kalinke ◽  
...  

The recently described tumor necrosis factor (TNF) family member LIGHT (herpes virus entry mediator [HVEM]-L/TNFSF14), a ligand for the lymphotoxin (LT)β receptor, HVEM, and DcR3, was inactivated in the mouse. In contrast to mice deficient in any other member of the LT core family, LIGHT−/− mice develop intact lymphoid organs. Interestingly, a lower percentage of LIGHT−/−LTβ−/− animals contain mesenteric lymph nodes as compared with LTβ−/− mice, whereas the splenic microarchitecture of LIGHT−/−LTβ−/− and LTβ−/− mice shows a comparable state of disruption. This suggests the existance of an additional undiscovered ligand for the LTβ receptor (LTβR) or a weak LTα3–LTβR interaction in vivo involved in the formation of secondary lymphoid organs. LIGHT acts synergistically with CD28 in skin allograft rejection in vivo. The underlying mechanism was identified in in vitro allogeneic MLR studies, showing a reduced cytotoxic T lymphocyte activity and cytokine production. Detailed analyses revealed that proliferative responses specifically of CD8+ T cells are impaired and interleukin 2 secretion of CD4+ T cells is defective in the absence of LIGHT. Furthermore, a reduced 3[H]-thymidine incorporation after T cell receptor stimulation was observed. This for the first time provides in vivo evidence for a cooperative role for LIGHT and LTβ in lymphoid organogenesis and indicates important costimulatory functions for LIGHT in T cell activation.


Blood ◽  
1997 ◽  
Vol 89 (10) ◽  
pp. 3806-3816 ◽  
Author(s):  
Joachim L. Schultze ◽  
Mark J. Seamon ◽  
Sabine Michalak ◽  
John G. Gribben ◽  
Lee M. Nadler

Abstract Follicular lymphomas (FLs) rarely induce clinically significant T-cell–mediated responses. We showed that freshly isolated tumor infiltrating T cells (T-TILs) lack tumor-specific cytotoxicity. Stimulation of these T cells with FL cells in the presence of interleukin-2 (IL-2) and/or costimulation via CD28 does not lead to T-cell activation and expansion. In contrast, when stimulated with FL cells preactivated via CD40, autologous T-TILs can be expanded by the addition of exogenous IL-2. These T cells can be further expanded in vitro by the addition of exogenous IL-4, IL-7, or interferon-γ, but not IL-12. Once activated, these T cells showed FL-directed cytotoxicity in four of five patients tested. We concluded that autologous cytotoxic anti-FL–specific T cells exist, but can only be detected in vitro under optimized conditions for T-cell stimulation and expansion. This suggests that their frequency in vivo is either very low or that the microenvironment does not provide the necessary signals to activate these T cells. This model system allows dissection of the requisite conditions for activation and expansion of lymphoma-directed cytotoxicity and may permit expansion of previously activated cytotoxic T cells for adoptive transfer.


1994 ◽  
Vol 77 (5) ◽  
pp. 2355-2359 ◽  
Author(s):  
N. Bitterman ◽  
N. Lahat ◽  
T. Rosenwald ◽  
A. Kinarty ◽  
Y. Melamed ◽  
...  

In a previous study we found a significant temporary decrease in the ratio of CD4/CD8 (helper, inducer/suppressor, cytotoxic) T lymphocytes in the peripheral blood of healthy human volunteers after exposure to a single commonly used profile of hyperbaric oxygen (HBO). The transient nature of the changes suggested redistribution of T-cell subsets. The purpose of the present study was to verify such a redistribution and to locate possible target organs in an animal model. A single exposure of rats to HBO (0.28 MPa) induced a highly significant rapid decrease in the CD4/CD8 ratio in peripheral blood count (P < 0.0001), confirming our previous findings in humans. HBO also induced a significant increase in the CD4/CD8 ratio in the lungs and lymph nodes (P < 0.001) and a significant decrease in the ratio in the spleen (P < 0.01). Furthermore, exposure to HBO induced a significant increase in T cells bearing surface interleukin-2 receptors in the blood, spleen, lungs, and lymph glands (P < 0.001) and a significant decrease in T cells expressing alpha beta-receptors in the lungs (P < 0.001) and lymph glands (P < 0.05). Our findings suggest rapid T-cell activation after a brief exposure to HBO, with shifts of CD4 and CD8 subsets and variations in T-cell receptor type. These rapid changes in the parameters of cell-mediated immunity may represent the activation of protective mechanisms against the toxic effect of oxygen or the early stages of pulmonary oxygen toxicity.


1998 ◽  
Vol 188 (2) ◽  
pp. 287-296 ◽  
Author(s):  
Angela M. Thornton ◽  
Ethan M. Shevach

Peripheral tolerance may be maintained by a population of regulatory/suppressor T cells that prevent the activation of autoreactive T cells recognizing tissue-specific antigens. We have previously shown that CD4+CD25+ T cells represent a unique population of suppressor T cells that can prevent both the initiation of organ-specific autoimmune disease after day 3 thymectomy and the effector function of cloned autoantigen-specific CD4+ T cells. To analyze the mechanism of action of these cells, we established an in vitro model system that mimics the function of these cells in vivo. Purified CD4+CD25+ cells failed to proliferate after stimulation with interleukin (IL)-2 alone or stimulation through the T cell receptor (TCR). When cocultured with CD4+CD25− cells, the CD4+CD25+ cells markedly suppressed proliferation by specifically inhibiting the production of IL-2. The inhibition was not cytokine mediated, was dependent on cell contact between the regulatory cells and the responders, and required activation of the suppressors via the TCR. Inhibition could be overcome by the addition to the cultures of IL-2 or anti-CD28, suggesting that the CD4+CD25+ cells may function by blocking the delivery of a costimulatory signal. Induction of CD25 expression on CD25− T cells in vitro or in vivo did not result in the generation of suppressor activity. Collectively, these data support the concept that the CD4+CD25+ T cells in normal mice may represent a distinct lineage of “professional” suppressor cells.


2020 ◽  
Author(s):  
Jonathan W. Lo ◽  
Maria Vila de Mucha ◽  
Luke B. Roberts ◽  
Natividad Garrido-Mesa ◽  
Arnulf Hertweck ◽  
...  

AbstractT-bet is the lineage-specifying transcription factor for CD4+ T helper type 1 (TH1) cells. T-bet has also been found in other CD4+ T cell subsets, including TH17 cells and TREG, where it modulates their functional characteristics. However, we lack information on when and where T-bet is expressed during T cell differentiation and how this impacts T cell function. To address this, we traced the ontogeny of T-bet-expressing cells using a fluorescent fate-mapping mouse line. We demonstrate that T-bet is expressed in a subset of CD4+ T cells with naïve cell surface markers and that this novel cell population is phenotypically and functionally distinct from conventional naïve CD4+ T cells. These cells are also distinct from previously described populations of memory phenotype and stem cell-like T cells. Naïve-like T-bet-experienced cells are polarised to the TH1 lineage, predisposed to produce IFNγ upon cell activation, and resist repolarisation to other lineages in vitro and in vivo. These results demonstrate that lineage-specifying factors can function to polarise T cells in the absence of canonical markers of T cell activation and that this has an impact on the subsequent T helper response.


Blood ◽  
1997 ◽  
Vol 89 (10) ◽  
pp. 3806-3816 ◽  
Author(s):  
Joachim L. Schultze ◽  
Mark J. Seamon ◽  
Sabine Michalak ◽  
John G. Gribben ◽  
Lee M. Nadler

Follicular lymphomas (FLs) rarely induce clinically significant T-cell–mediated responses. We showed that freshly isolated tumor infiltrating T cells (T-TILs) lack tumor-specific cytotoxicity. Stimulation of these T cells with FL cells in the presence of interleukin-2 (IL-2) and/or costimulation via CD28 does not lead to T-cell activation and expansion. In contrast, when stimulated with FL cells preactivated via CD40, autologous T-TILs can be expanded by the addition of exogenous IL-2. These T cells can be further expanded in vitro by the addition of exogenous IL-4, IL-7, or interferon-γ, but not IL-12. Once activated, these T cells showed FL-directed cytotoxicity in four of five patients tested. We concluded that autologous cytotoxic anti-FL–specific T cells exist, but can only be detected in vitro under optimized conditions for T-cell stimulation and expansion. This suggests that their frequency in vivo is either very low or that the microenvironment does not provide the necessary signals to activate these T cells. This model system allows dissection of the requisite conditions for activation and expansion of lymphoma-directed cytotoxicity and may permit expansion of previously activated cytotoxic T cells for adoptive transfer.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A746-A746
Author(s):  
Kristel Kemper ◽  
Ellis Gielen ◽  
Mischa Houtkamp ◽  
Peter Boross ◽  
Saskia Burm ◽  
...  

BackgroundThe tumor-associated antigen 5T4 is expressed across a wide range of solid cancers. DuoBody-CD3x5T4 is a bispecific antibody (bsAb) that crosslinks CD3 on T cells with 5T4 on tumor cells, thereby inducing T-cell activation and T-cell mediated cytotoxicity in 5T4-expressing tumor cells. Here, we tested the capacity of DuoBody-CD3x5T4 to engage different T-cell subsets in vitro and investigated the mechanism of action (MoA) in vivo by combining preclinical efficacy studies with exploratory pharmacodynamic (PD) biomarker analysesMethodsImmunohistochemistry was performed on patient-derived tumor tissue-microarrays using a commercial 5T4 monoclonal antibody (EPR5529). The capacity of DuoBody-CD3x5T4 to engage naïve and memory T-cell subsets was assessed in co-cultures of T cells and 5T4-positive tumor cells, using T-cell activation and T-cell mediated cytotoxicity as readouts. Anti-tumor activity in vivo as well as peripheral and intratumoral PD biomarkers were investigated in humanized mice bearing 5T4-expressing cell line-derived xenograft (CDX) or patient-derived xenograft (PDX) tumor models.ResultsHigh prevalence of 5T4 expression (in >86% of biopsies) was observed in NSCLC, SCCHN, TNBC, bladder, esophageal, prostate and uterine cancer. In co-cultures of 5T4+ tumor cells and T cells in vitro, DuoBody-CD3x5T4 induced dose-dependent cytotoxicity, associated with T-cell activation, proliferation, and cytokine, perforin and granzyme production. Crosslinking of T cells with 5T4-expressing tumor cells was essential as no cytotoxicity was observed in CRISPR-Cas9-generated 5T4-knockout tumor cells or with control bsAbs targeting only CD3 or 5T4. Importantly, naïve and memory CD4+ or CD8+ T-cell subsets had equal capacity to mediate DuoBody-CD3x5T4-induced cytotoxicity, although naïve T-cell subsets showed slower kinetics. DuoBody-CD3x5T4 (0.5–20 mg/kg) demonstrated anti-tumor activity in 5T4+ breast and prostate cancer CDX and lung cancer PDX models in humanized mice. Treatment with DuoBody-CD3x5T4 was associated with intratumoral and peripheral T-cell activation as well as elevated cytokine levels, including IFNγ, IL-6 and IL-8, in peripheral blood.ConclusionsDuoBody-CD3x5T4 induced T-cell mediated cytotoxicity in 5T4-expressing tumor cells, associated with T-cell activation and cytokine production in vitro. DuoBody-CD3x5T4 efficiently engaged naïve and memory T cells within both CD4+ and CD8+ T-cell populations to induce T-cell mediated cytotoxicity in 5T4+ tumor cells. In humanized CDX and PDX mouse models, DuoBody-CD3x5T4 showed anti-tumor activity, in addition to PD biomarkers associated with T-cell activation in the tumor and periphery. Currently, DuoBody-CD3x5T4 is being investigated in a first-in-human clinical trial for the treatment of solid tumors (NCT04424641), in which exploratory biomarker analyses to study the clinical MoA and PD are included.Ethics ApprovalThe CDX animal experiments performed are in compliance with the Dutch animal protection law (WoD) translated from the directives (2010/63/EU) and are approved by the Ethical committee of Utrecht. For the PDX models, all patients had given written informed consent, and the animal experiments were carried out in accordance with the German Animal Protection Law (LaGeSoBerlin, A0452/08). The studies were approved by the local Institutional Review Board of Charite University Medicine, Germany.


Sign in / Sign up

Export Citation Format

Share Document