scholarly journals The Nigral Coup in Parkinson’s Disease by α-Synuclein and Its Associated Rebels

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 598
Author(s):  
Jeswinder Sian-Hulsmann ◽  
Peter Riederer

The risk of Parkinson’s disease increases with age. However, the etiology of the illness remains obscure. It appears highly likely that the neurodegenerative processes involve an array of elements that influence each other. In addition, genetic, endogenous, or exogenous toxins need to be considered as viable partners to the cellular degeneration. There is compelling evidence that indicate the key involvement of modified α-synuclein (Lewy bodies) at the very core of the pathogenesis of the disease. The accumulation of misfolded α-synuclein may be a consequence of some genetic defect or/and a failure of the protein clearance system. Importantly, α-synuclein pathology appears to be a common denominator for many cellular deleterious events such as oxidative stress, mitochondrial dysfunction, dopamine synaptic dysregulation, iron dyshomeostasis, and neuroinflammation. These factors probably employ a common apoptotic/or autophagic route in the final stages to execute cell death. The misfolded α-synuclein inclusions skillfully trigger or navigate these processes and thus amplify the dopamine neuron fatalities. Although the process of neuroinflammation may represent a secondary event, nevertheless, it executes a fundamental role in neurodegeneration. Some viral infections produce parkinsonism and exhibit similar characteristic neuropathological changes such as a modest brain dopamine deficit and α-synuclein pathology. Thus, viral infections may heighten the risk of developing PD. Alternatively, α-synuclein pathology may induce a dysfunctional immune system. Thus, sporadic Parkinson’s disease is caused by multifactorial trigger factors and metabolic disturbances, which need to be considered for the development of potential drugs in the disorder.

Author(s):  
J. Eric Ahlskog

Most of the research into the cause of Lewy disorders has focused on Parkinson’s disease, since that is the best defined of these conditions and, therefore, the most straightforward to study. Dementia with Lewy bodies (DLB) is more difficult to diagnose with certainty, especially in the early years of the disease. What we collectively learn about Parkinson’s disease will likely be very relevant to our understanding of DLB. Multiple investigations have linked Parkinson’s disease to both environmental exposures and genetic factors. However, these associations have all been modest, and none of them accounts for more than a few percent of the contribution to the cause of sporadic Parkinson’s disease (i.e., the attributable risks are low). These investigations are ongoing and hopefully will soon provide a more complete understanding of the cause(s). Perhaps the most important clue to all Lewy conditions is located in the brain: the Lewy body itself. A recent sophisticated analysis of Lewy bodies revealed approximately 300 different component proteins. However, we already knew that Lewy bodies contain high concentrations of a normal protein called alpha synuclein. In fact, Lewy bodies are conventionally identified under the microscope with antibody stains that specifically bind to alpha synuclein. Could this be the crucial protein among the nearly 300? While the alpha synuclein story is focused on Parkinson’s disease, it may be just as relevant to DLB, as we shall see. The story starts with a large Italian-American family with Parkinson’s disease, studied by Dr. Lawrence Golbe and colleagues at the Robert Wood Johnson Medical Center in New Brunswick, New Jersey. In this rare family, many members of multiple generations had been affected by Parkinson’s disease (with Lewy bodies), consistent with a single gene passed on with dominant inheritance. It took a number of years to identify that abnormal gene, which ultimately was proven to be the gene coding for alpha synuclein. It was quickly discovered that this genetic error is not present in usual cases of Parkinson’s disease.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2565
Author(s):  
Ga Ram Jeong ◽  
Byoung Dae Lee

Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are common genetic risk factors for both familial and sporadic Parkinson’s disease (PD). Pathogenic mutations in LRRK2 have been shown to induce changes in its activity, and abnormal increase in LRRK2 kinase activity is thought to contribute to PD pathology. The precise molecular mechanisms underlying LRRK2-associated PD pathology are far from clear, however the identification of LRRK2 substrates and the elucidation of cellular pathways involved suggest a role of LRRK2 in microtubule dynamics, vesicular trafficking, and synaptic transmission. Moreover, LRRK2 is associated with pathologies of α-synuclein, a major component of Lewy bodies (LBs). Evidence from various cellular and animal models supports a role of LRRK2 in the regulation of aggregation and propagation of α-synuclein. Here, we summarize our current understanding of how pathogenic mutations dysregulate LRRK2 and discuss the possible mechanisms leading to neurodegeneration.


2010 ◽  
Vol 19 (19) ◽  
pp. 3759-3770 ◽  
Author(s):  
Silvia Zucchelli ◽  
Marta Codrich ◽  
Federica Marcuzzi ◽  
Milena Pinto ◽  
Sandra Vilotti ◽  
...  

1998 ◽  
Vol 3 (6) ◽  
pp. 493-499 ◽  
Author(s):  
E Mezey ◽  
A M Dehejia ◽  
G Harta ◽  
S F Suchy ◽  
R L Nussbaum ◽  
...  

2000 ◽  
Vol 877 (2) ◽  
pp. 379-381 ◽  
Author(s):  
P Shashidharan ◽  
P.F Good ◽  
A Hsu ◽  
D.P Perl ◽  
M.F Brin ◽  
...  

2015 ◽  
Vol 10 (1) ◽  
Author(s):  
Davide Chiasserini ◽  
Silvia Paciotti ◽  
Paolo Eusebi ◽  
Emanuele Persichetti ◽  
Anna Tasegian ◽  
...  

1999 ◽  
Vol 4 (2) ◽  
pp. 197-197
Author(s):  
E Mezey ◽  
A M Dehejia ◽  
G Harta ◽  
N Tresser ◽  
S F Suchy ◽  
...  

Author(s):  
André Barbeau

SUMMARYIn this essay I present a new “global approach hypothesis” to explain the pathophysiology of Parkinson’s disease: “Susceptibility to Parkinsonism is genetically determined and is reflected in all cells. I propose that idiopathic Parkinson’s disease is the combined result of a generalized cell aging process accelerated, in susceptible individuals, by a variety of often repetitive trigger factors. These factors have in common the fact that they cause a transient increase in turnover within catecholamine producing neurons, centrally as well as peripherally. This results in accumulation within these neurons of free radicals. When the level of the toxic substances, in quantity or in time of exposure, exceeds the scavenging capacity of the cell, damage to organelles and to membranes results, leading to the formation of Lewy bodies through an autoimmune reaction to damaged filaments and to cell death, particularly in the pigmented neurons of the brainstem. The progressive cell depletion leads to a compensatory increase in catecholamine turnover in the remaining pigmented cells, and an ever-accelerating degenerative process. The resulting neurotransmitter imbalance in the basal ganglia explains the symptoms of Parkinson’s disease”. In the light of this hypothesis, our research objectives should be (1) to delineate the limits of true Parkinson’s disease from all phenocopies; (2) to identify individuals susceptible to parkinsonism and the most common trigger factors; (3) to reduce the metabolic effects of unavoidable trigger factors and (4) to protect susceptible individuals by increasing the functional availability of free radical trapping agents.


Sign in / Sign up

Export Citation Format

Share Document