scholarly journals Evaluation of Micro Satellite Instability and Mismatch Repair Status in Different Solid Tumors: A Multicenter Analysis in a Real World Setting

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1878
Author(s):  
Umberto Malapelle ◽  
Paola Parente ◽  
Francesco Pepe ◽  
Caterina De Luca ◽  
Pasquale Pisapia ◽  
...  

Immune-checkpoint inhibitors (ICIs) play a key role in the treatment of advanced stage colorectal cancer (CRC) patients featuring a deficient DNA mismatch repair (dMMR) system or a high microsatellite instability (MSI-H) profile. However, beyond the established role in CRC patients, ICIs have highly proven efficacy in other solid tumors featuring MSI-H/dMMR status represented by endometrial, gastric, ovarian, prostatic, and pancreatic carcinomas (EC, GC, OC, PrC, and PaC). Our aim was to compare the concordance rates among the Idylla™ MSI test, TapeStation 4200, and immunohistochemical (IHC) analysis in assessing MSI-H/dMMR status in EC, GC, OC, PrC, and PaC patients. The Sanger sequencing-based Titano MSI test was used in discordant cases. One hundred and eighty-five cases (n = 40 PrC, n = 39 GC, n = 38 OC, n = 35 PaC, and n = 33 EC) were retrospectively selected. MMR protein expression was evaluated by IHC. After DNA quality and quantity evaluations, the IdyllaTM and TapeStation 4200 platforms were adopted for the evaluation of MSI status. Remarkably, compared to IHC, the Idylla™ platform achieved a global concordance rate of 94.5% (154/163) for the microsatellite stable (MSS)/proficient MMR (pMMR) cases and 77.3% (17/22) for the MSI-H/dMMR cases. Similarly, a global concordance rate of 91.4% (149/163) and 68.2% (15/22) for MSS/pMMR and MSI-H/dMMR cases was also identified between IHC and the TapeStation 4200 microfluidic system. In addition, a global concordance of 93.1% (148/159) and 69.2% (18/26) for MSS/pMMR and MSI-H/dMMR cases was observed between the Idylla™ and TapeStation 4200 platforms. Discordant cases were analyzed using the Titano MSI kit. Overall, our data pinpointed a central role for molecular techniques in the diagnostic evaluation of dMMR/MSI-H status not only in CRC patients but also in other types of solid tumors.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1112-1112
Author(s):  
Gaurav Goyal ◽  
Robert Vassallo ◽  
Karen L Rech ◽  
Jay H Ryu ◽  
Caroline J Davidge-Pitts ◽  
...  

Abstract Introduction Histiocytic neoplasms are rare hematological malignancies that have protean clinical manifestations and can pose significant management challenges. Recently, vemurafenib was approved by the US-FDA for treatment of BRAF-V600-mutant Erdheim-Chester disease (ECD). However, there is a lack of FDA-approved therapies for other histiocytic neoplasms such as Langerhans cell histiocytosis (LCH) and Rosai-Dorfman disease (RDD). Over the last 5 years, immune checkpoint inhibitors such as programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) inhibitors have shown significant improvement in outcomes among patients with several hematological and solid organ malignancies. In order to identify appropriate treatment candidates for these therapies, predictive biomarkers have been developed in various cancers. Evidence from solid tumors has suggested a favorable response to checkpoint inhibitor therapy with higher tumor mutational burden (TMB), defined as the number of mutations within a tumor genome. Next generation sequencing (NGS) of various tumors has shown an association between TMB of < 5 mutations/megabase (mut/Mb) to be associated with an absence of benefit from checkpoint inhibitors. In addition, high levels of PD-1/PD-L1 expression and microsatellite instability (MSI) are also correlated with response to therapy. The latter may be a result of somatic or germline alterations in DNA mismatch repair genes. In this study, we report the results for these biomarkers using NGS in patients with histiocytic neoplasms. Methods We utilized TempusTM NGS platform to analyze the tissue specimen of patients with histiocytic neoplasm. The Tempus xO Assay (Tempus Labs; Chicago, IL) combines a 1,711 gene targeted somatic and germline DNA sequencing panel with RNA-sequencing to detect both germline and somatic single nucleotide polymorphisms, indels, copy number variants, and gene rearrangements causing chimeric mRNA transcript expression in a wide array of solid tumor types. The assay utilizes formalin-fixed paraffin-embedded tumor samples and matched blood samples. TMB was calculated and reported as somatic mutations in tumor tissue per million base-pairs or mut/Mb. RNA sequencing was utilized to assess for PD-L1 and PD-1 gene expressions as compared to matched tumor and normal reference sets. Both PD-L1 and PD-1 gene expressions were reported as percentiles. DNA mismatch repair status was predicted by analysis of alterations in five common mismatch repair genes in somatic and germline DNA (MSH2, MSH6, MLH1, PMS2, and EPCAM). If there were no alterations identified in these genes, the mismatch repair status was predicted as microsatellite stable (MSS). Results A total of 13 patients with histiocytic neoplasms were included in the study. The distribution of individual histiocytic neoplasms was as follows: RDD (n=9), ECD (n=3), and LCH (n=1). The median TMB for RDD and ECD patients was 0.17 mut/Mb. For the one patient with LCH, the TMB level was 0.51 mut/Mb. Individual TMB levels are shown in figure 1. PD-L1 and PD-1 expression levels are depicted in table 1. Compared to normal reference sets, the PD-L1 expression was elevated in one patient each with RDD and ECD, and PD-1 expression was elevated in two patients each with RDD and ECD. For both ECD patients with higher PD-1 expression, NGS also showed presence of BRAF-V600E in the tumor tissue. The LCH patient had a low level of PD-L1 and PD-1 expression. For patients where evaluation of DNA mismatch repair was feasible on the tissue specimen (n=4), none showed related somatic or germline alterations. Conclusions In our series, the histiocytic neoplasms RDD, ECD, and LCH demonstrated low levels of TMB. None of the RDD and ECD patients were found to have alterations in DNA mismatch repair genes. Other markers of immunotherapy such as PD-L1/PD-1 expression appeared to be higher in ECD patients with BRAF-V600E, but in only a small subset of RDD patients. The low TMB seen in our study suggests that these histiocytic neoplasms may be less likely to respond to immune checkpoint inhibitors such as anti-PD-1 and anti-PD-L1 agents as compared to the tumors with high TMB. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Tong Xie ◽  
Qin Feng ◽  
Zhongwu Li ◽  
Ming Lu ◽  
Jian Li ◽  
...  

Abstract Background Germline DNA mismatch repair (MMR) gene aberrations are associated with colorectal cancer (CRC) predisposition and high tumor mutation burden (TMB-H), with increased likelihood of favorable response to immune checkpoint inhibitors (ICIs). Case presentation We present a 32-year old male patient diagnosed with constitutional MMR deficiency (CMMRD) CRC whose MMR immunohistochemistry (IHC) revealed inconsistent results from two tumor blocks. Targeted sequencing of two tumor specimens used in MMR-IHC and plasma-derived circulating tumor DNA consistently revealed the detection of bi-allelic germline MSH6 c.3226C > T (p.R1076C) mutation, TMB-H as well as the genetic heterogeneity of the tumor samples. Unexpectedly, both blocks were microsatellite stable (MSS) after PCR confirmation. Interestingly, the patient failed to show response to ICI monotherapy or dual therapy, but clinically benefitted from combined therapy of ICI pembrolizumab plus multi-kinase inhibitor regorafenib. Conclusion Our case reported a CMMRD patient with heterogeneous MMR results who showed complicated response to ICIs, highlighting the importance of accurate diagnosis using targeted sequencing with multiple specimens to reveal the possible mechanism of response to ICI in patients with CMMRD.


2015 ◽  
Vol 21 (7) ◽  
pp. 2159-2168 ◽  
Author(s):  
Ryo Inada ◽  
Shigeki Sekine ◽  
Hirokazu Taniguchi ◽  
Hitoshi Tsuda ◽  
Hitoshi Katai ◽  
...  

2021 ◽  
Vol 3 (1) ◽  
pp. 1-5
Author(s):  
Nagwa Ibrahim ◽  
Muneerah Alzouman ◽  
Abdulaziz Alhamad ◽  
Muneera AlMajed ◽  
Mohamed Almeziny ◽  
...  

Immune checkpoint inhibitors such as nivolumab and pembrolizumab are approved by Food and Drug Administration for patients diagnosed with metastatic solid tumors with high microsatellite instability (MSI) or mismatch repair deficient (dMMR). The prognosis of these patients is generally poor, that is why it is very essential to identify the targeted patients who can benefit from immunotherapy. Pembrolizumab is approved in our institution for this indication. In order to ensure proper utilization of available resources, we decided to make a pilot retrospective review to evaluate pembrolizumab utilization, to identify the problems we are facing then to set an action plan through multidisciplinary approach. Based on the results we set recommendations. This paper is innovative and the first in kind. It could be used as guidance for other centers using immunotherapy and could be applied for other drugs as well to ensure best practice, patient safety and maximize utilization of resources.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2317 ◽  
Author(s):  
Federica Marmorino ◽  
Alessandra Boccaccino ◽  
Marco Maria Germani ◽  
Alfredo Falcone ◽  
Chiara Cremolini

The introduction of checkpoint inhibitors provided remarkable achievements in several solid tumors but only 5% of metastatic colorectal cancer (mCRC) patients, i.e., those with bearing microsatellite instable (MSI-high)/deficient DNA mismatch repair (dMMR) tumors, benefit from this approach. The favorable effect of immunotherapy in these patients has been postulated to be due to an increase in neoantigens due to their higher somatic mutational load, also associated with an abundant infiltration of immune cells in tumor microenvironment (TME). While in patients with dMMR tumors checkpoint inhibitors allow achieving durable response with dramatic survival improvement, current results in patients with microsatellite stable (MSS or MSI-low)/proficient DNA mismatch repair (pMMR) tumors are disappointing. These tumors show low mutational load and absence of “immune-competent” TME, and are intrinsically resistant to immune checkpoint inhibitors. Modifying the interplay among cancer cells, TME and host immune system is the aim of multiple lines of research in order to enhance the immunogenicity of pMMR mCRC, and exploit immunotherapy also in this field. Here, we focus on the rationale behind ongoing clinical trials aiming at extending the efficacy of immunotherapy beyond the MSI-high/dMMR subgroup with particular regard to academic no-profit studies.


Sign in / Sign up

Export Citation Format

Share Document