scholarly journals Expression of miRNAs from the Imprinted DLK1/DIO3 Locus Signals the Osteogenic Potential of Human Pluripotent Stem Cells

Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1523 ◽  
Author(s):  
Laetitia Barrault ◽  
Jacqueline Gide ◽  
Tingting Qing ◽  
Lea Lesueur ◽  
Jorg Tost ◽  
...  

Substantial variations in differentiation properties have been reported among human pluripotent cell lines (hPSC), which could affect their utility and clinical safety. We characterized the variable osteogenic capacity observed between different human pluripotent stem cell lines. By focusing on the miRNA expression profile, we demonstrated that the osteogenic differentiation propensity of human pluripotent stem cell lines could be associated with the methylation status and the expression of miRNAs from the imprinted DLK1/DIO3 locus. More specifically, quantitative analysis of the expression of six different miRNAs of that locus prospectively identified human embryonic stem cells and human-induced pluripotent stem cells with differential osteogenic differentiation capacities. At the molecular and functional levels, we showed that these miRNAs modulated the expression of the activin receptor type 2B and the downstream signal transduction, which impacted osteogenesis. In conclusion, miRNAs of the imprinted DLK1/DIO3 locus appear to have both a predictive value and a functional impact in determining the osteogenic fate of human pluripotent stem cells.

2015 ◽  
Vol 370 (1680) ◽  
pp. 20140365 ◽  
Author(s):  
Maria Rostovskaya ◽  
Nicholas Bredenkamp ◽  
Austin Smith

Human pluripotent stem cells can in principle be used as a source of any differentiated cell type for disease modelling, drug screening, toxicology testing or cell replacement therapy. Type I diabetes is considered a major target for stem cell applications due to the shortage of primary human beta cells. Several protocols have been reported for generating pancreatic progenitors by in vitro differentiation of human pluripotent stem cells. Here we first assessed one of these protocols on a panel of pluripotent stem cell lines for capacity to engender glucose sensitive insulin-producing cells after engraftment in immunocompromised mice. We observed variable outcomes with only one cell line showing a low level of glucose response. We, therefore, undertook a systematic comparison of different methods for inducing definitive endoderm and subsequently pancreatic differentiation. Of several protocols tested, we identified a combined approach that robustly generated pancreatic progenitors in vitro from both embryo-derived and induced pluripotent stem cells. These findings suggest that, although there are intrinsic differences in lineage specification propensity between pluripotent stem cell lines, optimal differentiation procedures may consistently direct a substantial fraction of cells into pancreatic specification.


2020 ◽  
Vol 44 ◽  
pp. 101721 ◽  
Author(s):  
Lydiane Pichard ◽  
Jean-Marc Brondelo ◽  
Fabienne Becker ◽  
Romain Desprat ◽  
Frédéric De Ceuninck ◽  
...  

2021 ◽  
Vol 53 ◽  
pp. 102297
Author(s):  
Lydiane Pichard ◽  
Jean-Marc Brondello ◽  
Fabienne Becker ◽  
Romain Desprat ◽  
Frédéric De Ceuninck ◽  
...  

2013 ◽  
Vol 25 (1) ◽  
pp. 294
Author(s):  
J.-K. Park ◽  
K.-H. Choi ◽  
D.-C. Son ◽  
J.-I. Oh ◽  
C.-K. Lee

A recent study has reported that pluripotent stem cells can be categorized according to their pluripotent state. The first is the “naïve” state, which is characterised by small, round or dome-shaped colony morphologies, LIF and BMP4 signalling pathways, and 2 active X chromosomes in females; mouse embryonic stem cells (mESC) represent this type. A second “primed” state has also been described and is possible in mouse epiblast stem cells (mEpiSC) or human embryonic stem cells (hESC). These primed state pluripotent stem cells display flattened monolayer colony morphologies, FGF and nodal/activin signalling pathways, and X chromosome inactivation in females. Meanwhile, a few studies have reported that primed pluripotent stem cell lines could be reverted to a naïve pluripotent state using various exogenous factors including GSK3β and MEK inhibitors (2i), LIF, hypoxic conditions, and upregulation of Oct3 or klf4. Therefore, the purpose of this study was to investigate whether a LIF-dependent naïve pluripotent stem cell line could be derived from porcine embryonic fibroblasts (PEF) via various previously reported factors. We were able to successfully induce PEF into a naïve state-like pluripotent stem cell line by viral infection using FUW-tetO-hOCT4, FUW-tetO-hSOX2, FUW-tetO-hKlf4, FUW-tetO-hMYC, and FUW-M2rtTA obtained from Addgene and addition of 2i and LIF. These naive state-like pluripotent stem cells display mESC-like morphologies, clonogenicity by trypsin, and expression of Oct4, Sox2, Nanog, and SSEA1 using PCR, immunocytochemistry, and fluorescence-activated cell sorting. All cell lines maintained stemness characteristics and stable morphology for more than 30 passages. In addition, naïve state-like pluripotent stem cells could be induced to differentiate to fibroblast-like cells by withdrawal of doxycycline, lif, and 2i. These differentiated cells could be regenerated into naïve state-like pluripotent stem cells by addition of doxycycline, lif, and 2i. We suggest that, as a nonpermissive species, the porcine species undergoes reprogramming into a primed state during the establishment of pluripotent stem cell lines and needs various exogenous factors, including continuous transgene expression, GSK3β and MEK inhibitors (2i), and LIF to be induced into naïve state-like pluripotent stem cells. This work was supported by the BioGreen 21 Program (PJ0081382011), Rural Development Administration, Republic of Korea.


2019 ◽  
Vol 7 (1) ◽  
pp. 373-388
Author(s):  
Haishuang Lin ◽  
Qian Du ◽  
Qiang Li ◽  
Ou Wang ◽  
Zhanqi Wang ◽  
...  

Alginate hydrogel tubes are designed for the scalable expansion of human pluripotent stem cells and efficient differentiation into endothelial cells.


2021 ◽  
Vol 4 (s1) ◽  
Author(s):  
Salvatore Simmini ◽  
Allen C. Eaves ◽  
Sharon A. Louis ◽  
Wing Chang

Efficient and reproducible generation of tissue-specific organoids from Human Pluripotent Stem Cells (hPSCs) represents one of the key tools for reducing the use of animals in research. STEMCELL Technologies is committed to optimizing workflows that efficiently support the generation and maintenance of multiple types of organoid cultures derived from hPSCs.


2016 ◽  
Vol 16 (3) ◽  
pp. 735-739
Author(s):  
Federico González-Pozas ◽  
Rosa Montes ◽  
Lourdes López-Onieva ◽  
Tamara Romero ◽  
Joan Domingo-Reinés ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document