scholarly journals Parkin Overexpression Attenuates Sepsis-Induced Muscle Wasting

Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1454 ◽  
Author(s):  
Jean-Philippe Leduc-Gaudet ◽  
Dominique Mayaki ◽  
Olivier Reynaud ◽  
Felipe E. Broering ◽  
Tomer J. Chaffer ◽  
...  

Sepsis elicits skeletal muscle weakness and fiber atrophy. The accumulation of injured mitochondria and depressed mitochondrial functions are considered as important triggers of sepsis-induced muscle atrophy. It is unclear whether mitochondrial dysfunctions in septic muscles are due to the inadequate activation of quality control processes. We hypothesized that overexpressing Parkin, a protein responsible for the recycling of dysfunctional mitochondria by the autophagy pathway (mitophagy), would confer protection against sepsis-induced muscle atrophy by improving mitochondrial quality and content. Parkin was overexpressed for four weeks in the limb muscles of four-week old mice using intramuscular injections of adeno-associated viruses (AAVs). The cecal ligation and perforation (CLP) procedure was used to induce sepsis. Sham operated animals were used as controls. All animals were studied for 48 h post CLP. Sepsis resulted in major body weight loss and myofiber atrophy. Parkin overexpression prevented myofiber atrophy in CLP mice. Quantitative two-dimensional transmission electron microscopy revealed that sepsis is associated with the accumulation of enlarged and complex mitochondria, an effect which was attenuated by Parkin overexpression. Parkin overexpression also prevented a sepsis-induced decrease in the content of mitochondrial subunits of NADH dehydrogenase and cytochrome C oxidase. We conclude that Parkin overexpression prevents sepsis-induced skeletal muscle atrophy, likely by improving mitochondrial quality and contents.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xiongwei Yu ◽  
Wenjun Han ◽  
Changli Wang ◽  
Daming Sui ◽  
Jinjun Bian ◽  
...  

Hemin, an inducer of heme oxygenase-1 (HO-1), can enhance the activation of HO-1. HO-1 exhibits a variety of activities, such as anti-inflammatory, antioxidative, and antiapoptotic functions. The objective of this study was to investigate the effects of hemin on sepsis-induced skeletal muscle wasting and to explore the mechanisms by which hemin exerts its effects. Cecal ligation and perforation (CLP) was performed to create a sepsis mouse model. Mice were randomly divided into four groups: control, CLP, CLP plus group, and CLP-hemin-ZnPP (a HO-1 inhibitor). The weight of the solei from the mice was measured, and histopathology was examined. Cytokines were measured by enzyme-linked immunosorbent assay (ELISA). Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting were used to assess the expression levels of HO-1 and atrogin-1. Furthermore, we investigated the antioxidative effects of HO-1 by detecting malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity. CLP led to dramatic skeletal muscle weakness and atrophy, but pretreatment with hemin protected mice against CLP-mediated muscle atrophy. Hemin also induced high HO-1 expression, which resulted in suppressed proinflammatory cytokine and reactive oxygen species (ROS) production. The expression of MuRF1 and atrogin-1, two ubiquitin ligases of the ubiquitin-proteasome system- (UPS-) mediated proteolysis, was also inhibited by increased HO-1 levels. Hemin-mediated increases in HO-1 expression exert protective effects on sepsis-induced skeletal muscle atrophy at least partly by inhibiting the expression of proinflammatory cytokines, UPS-mediated proteolysis, and ROS activation. Therefore, hemin might be a new treatment target against sepsis-induced skeletal muscle atrophy.


2016 ◽  
Vol 120 (2) ◽  
pp. 178-187 ◽  
Author(s):  
Erwann Salaun ◽  
Luz Lefeuvre-Orfila ◽  
Thibault Cavey ◽  
Brice Martin ◽  
Bruno Turlin ◽  
...  

Bedridden patients in intensive care unit or after surgery intervention commonly develop skeletal muscle weakness. The latter is promoted by a variety of prolonged hospitalization-associated conditions. Muscle disuse is the most ubiquitous and contributes to rapid skeletal muscle atrophy and progressive functional strength reduction. Disuse causes a reduction in fatty acid oxidation, leading to its accumulation in skeletal muscle. We hypothesized that muscle fatty acid accumulation could stimulate ceramide synthesis and promote skeletal muscle weakness. Therefore, the present study was designed to determine the effects of sphingolipid metabolism on skeletal muscle atrophy induced by 7 days of disuse. For this purpose, male Wistar rats were treated with myriocin, an inhibitor of de novo synthesis of ceramides, and subjected to hindlimb unloading (HU) for 7 days. Soleus muscles were assayed for fiber diameter, ceramide levels, protein degradation, and apoptosis signaling. Serum and liver were removed to evaluate the potential hepatoxicity of myriocin treatment. We found that HU increases content of saturated C16:0 and C18:0 ceramides and decreases soleus muscle weight and fiber diameter. HU increased the level of polyubiquitinated proteins and induced apoptosis in skeletal muscle. Despite a prevention of C16:0 and C18:0 muscle accumulation, myriocin treatment did not prevent skeletal muscle atrophy and concomitant induction of apoptosis and proteolysis. Moreover, myriocin treatment increased serum transaminases and induced hepatocyte necrosis. These data highlight that inhibition of de novo synthesis of ceramides during immobilization is not an efficient strategy to prevent skeletal muscle atrophy and exerts adverse effects like hepatotoxicity.


Sign in / Sign up

Export Citation Format

Share Document