scholarly journals Comprehensive Structural and Molecular Comparison of Spike Proteins of SARS-CoV-2, SARS-CoV and MERS-CoV, and Their Interactions with ACE2

Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2638 ◽  
Author(s):  
Ma’mon M. Hatmal ◽  
Walhan Alshaer ◽  
Mohammad A. I. Al-Hatamleh ◽  
Malik Hatmal ◽  
Othman Smadi ◽  
...  

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has recently emerged in China and caused a disease called coronavirus disease 2019 (COVID-19). The virus quickly spread around the world, causing a sustained global outbreak. Although SARS-CoV-2, and other coronaviruses, SARS-CoV and Middle East respiratory syndrome CoV (MERS-CoV) are highly similar genetically and at the protein production level, there are significant differences between them. Research has shown that the structural spike (S) protein plays an important role in the evolution and transmission of SARS-CoV-2. So far, studies have shown that various genes encoding primarily for elements of S protein undergo frequent mutation. We have performed an in-depth review of the literature covering the structural and mutational aspects of S protein in the context of SARS-CoV-2, and compared them with those of SARS-CoV and MERS-CoV. Our analytical approach consisted in an initial genome and transcriptome analysis, followed by primary, secondary and tertiary protein structure analysis. Additionally, we investigated the potential effects of these differences on the S protein binding and interactions to angiotensin-converting enzyme 2 (ACE2), and we established, after extensive analysis of previous research articles, that SARS-CoV-2 and SARS-CoV use different ends/regions in S protein receptor-binding motif (RBM) and different types of interactions for their chief binding with ACE2. These differences may have significant implications on pathogenesis, entry and ability to infect intermediate hosts for these coronaviruses. This review comprehensively addresses in detail the variations in S protein, its receptor-binding characteristics and detailed structural interactions, the process of cleavage involved in priming, as well as other differences between coronaviruses.

2021 ◽  
Author(s):  
Jiri Zahradnik ◽  
Jaroslav Nunvar ◽  
Gideon Schreiber

Much can be learned from 1.2 million sequences of SARS-CoV-2 generated during the last 15 months. Out of the overwhelming number of mutations sampled so far, only few rose to prominence in the viral population. Many of these emerged recently and independently in multiple lineages. Such a textbook example of convergent evolution at the molecular level is not only curiosity but a guide to uncover the basis for adaptive advantage behind these events. Focusing on the extent of the convergent evolution in the spike (S) protein, our report confirms that the most concerning SARS-CoV-2 lineages carry the heaviest burden of convergent S-protein mutations, suggesting their fundamental adaptive advantage. The great majority (21/25) of S-protein sites under convergent evolution tightly cluster in three functional domains; N-terminal domain, receptor-binding domain, and Furin cleavage site. We further show that among the S-protein receptor-binding motif mutations, ACE2 affinity-improving substitutions are favored. While the probed mutation space in the S protein covered all amino-acids reachable by single nucleotide changes, substitutions requiring two nucleotide changes or epistatic mutations of multiple-residues have only recently started to emerge. Unfortunately, despite their convergent emergence and physical association, most of these adaptive mutations and their combinations remain understudied. We aim to promote research of current variants which are currently understudied but may become important in the future.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
James P. Chambers ◽  
Jieh Yu ◽  
James J. Valdes ◽  
Bernard P. Arulanandam

Viruses are obligate intracellular parasites, and host cell entry is the first step in the viral life cycle. The SARS-CoV-2 (COVID-19) entry process into susceptible host tissue cells is complex requiring (1) attachment of the virus via the conserved spike (S) protein receptor-binding motif (RBM) to the host cell angiotensin-converting-enzyme 2 (ACE2) receptor, (2) S protein proteolytic processing, and (3) membrane fusion. Spike protein processing occurs at two cleavage sites, i.e., S1/S2 and S 2 ′ . Cleavage at the S1/S2 and S 2 ′ sites ultimately gives rise to generation of competent fusion elements important in the merging of the host cell and viral membranes. Following cleavage, shedding of the S1 crown results in significant conformational changes and fusion peptide repositioning for target membrane insertion and fusion. Identification of specific protease involvement has been difficult due to the many cell types used and studied. However, it appears that S protein proteolytic cleavage is dependent on (1) furin and (2) serine protease transmembrane protease serine 2 proteases acting in tandem. Although at present not clear, increased SARS-CoV-2 S receptor-binding motif binding affinity and replication efficiency may in part account for observed differences in infectivity. Cleavage of the ACE2 receptor appears to be yet another layer of complexity in addition to forfeiture and/or alteration of ACE2 function which plays an important role in cardiovascular and immune function.


2021 ◽  
Author(s):  
Michael O. Glocker ◽  
Kwabena F. M. Opuni ◽  
Hans-Juergen Thiesen

Our study focuses on free energy calculations of SARS-Cov2 spike protein receptor binding motives (RBMs) from wild type and variants-of-concern with particular emphasis on currently emerging SARS- CoV2 omicron variants of concern (VOC). Our computational free energy analysis underlines the occurrence of positive selection processes that specify omicron host adaption and bring changes on the molecular level into context with clinically relevant observations. Our free energy calculations studies regarding the interaction of omicron's RBM with human ACE2 shows weaker binding to ACE2 than alpha's, delta's, or wild type's RBM. Thus, less virus is predicted to be generated in time per infected cell. Our mutant analyses predict with focus on omicron variants a reduced spike-protein binding to ACE2--receptor protein possibly enhancing viral fitness / transmissibility and resulting in a delayed induction of danger signals as trade-off. Finally, more virus is produced but less per cell accompanied with delayed Covid-19 immunogenicity and pathogenicity. Regarding the latter, more virus is assumed to be required to initiate inflammatory immune responses.


2021 ◽  
Author(s):  
Atanu Acharya ◽  
Diane Lynch ◽  
Anna Pavlova ◽  
Yui Tik Pang ◽  
James Gumbart

We report a distinct difference in the interactions of the glycans of the host-cell receptor, ACE2, with SARS-CoV-2 and SARS-CoV S-protein receptor-binding domains (RBDs). Our analysis demonstrates that the ACE2 glycan at N90 may offer protection against infections of both coronaviruses, while the ACE2 glycan at N322 enhances interactions with the SARS-CoV-2 RBD. The interactions of the ACE2 glycan at N322 with SARS-CoV RBD are blocked by the presence of the RBD glycan at N357 of the SARS-CoV RBD. The absence of this glycosylation site on SARS-CoV-2 RBD may enhance its binding with ACE2.


2021 ◽  
pp. 101175
Author(s):  
Ramiro Lorenzo ◽  
Lucas A. Defelipe ◽  
Lucio Aliperti ◽  
Stephan Niebling ◽  
Tânia F. Custódio ◽  
...  

2012 ◽  
Vol 11 (12) ◽  
pp. 1405-1413 ◽  
Author(s):  
Shibo Jiang ◽  
Maria Elena Bottazzi ◽  
Lanying Du ◽  
Sara Lustigman ◽  
Chien-Te Kent Tseng ◽  
...  

2009 ◽  
Vol 388 (4) ◽  
pp. 815-823 ◽  
Author(s):  
John E. Pak ◽  
Chetna Sharon ◽  
Malathy Satkunarajah ◽  
Thierry C. Auperin ◽  
Cheryl M. Cameron ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jack M. Crook ◽  
Ivana Murphy ◽  
Daniel P. Carter ◽  
Steven T. Pullan ◽  
Miles Carroll ◽  
...  

AbstractThe source of the COVID-19 pandemic is unknown, but the natural host of the progenitor sarbecovirus is thought to be Asian horseshoe (rhinolophid) bats. We identified and sequenced a novel sarbecovirus (RhGB01) from a British horseshoe bat, at the western extreme of the rhinolophid range. Our results extend both the geographic and species ranges of sarbecoviruses and suggest their presence throughout the horseshoe bat distribution. Within the spike protein receptor binding domain, but excluding the receptor binding motif, RhGB01 has a 77% (SARS-CoV-2) and 81% (SARS-CoV) amino acid homology. While apparently lacking hACE2 binding ability, and hence unlikely to be zoonotic without mutation, RhGB01 presents opportunity for SARS-CoV-2 and other sarbecovirus homologous recombination. Our findings highlight that the natural distribution of sarbecoviruses and opportunities for recombination through intermediate host co-infection are underestimated. Preventing transmission of SARS-CoV-2 to bats is critical with the current global mass vaccination campaign against this virus.


2021 ◽  
Author(s):  
Yen-Pang Hsu ◽  
Debopreeti Mukherjee ◽  
Vladimir Shchurik ◽  
Alexey Makarov ◽  
Benjamin F. Mann

AbstractGlycans of the SARS-CoV-2 spike protein are speculated to play functional roles in the infection processes as they extensively cover the protein surface and are highly conserved across the variants. To date, the spike protein has become the principal target for vaccine and therapeutic development while the exact effects of its glycosylation remain elusive. Experimental reports have described the heterogeneity of the spike protein glycosylation profile. Subsequent molecular simulation studies provided a knowledge basis of the glycan functions. However, there are no studies to date on the role of discrete glycoforms on the spike protein pathobiology. Building an understanding of its role in SARS-CoV-2 is important as we continue to develop effective medicines and vaccines to combat the disease. Herein, we used designed combinations of glycoengineering enzymes to simplify and control the glycosylation profile of the spike protein receptor-binding domain (RBD). Measurements of the receptor binding affinity revealed the regulatory effects of the RBD glycans. Remarkably, opposite effects were observed from differently remodeled glycans, which presents a potential strategy for modulating the spike protein behaviors through glycoengineering. Moreover, we found that the reported anti-SARS-CoV-(2) antibody, S309, neutralizes the impact of different RBD glycoforms on the receptor binding affinity. Overall, this work reports the regulatory roles that glycosylation plays in the interaction between the viral spike protein and host receptor, providing new insights into the nature of SARS-CoV-2. Beyond this study, enzymatic remodeling of glycosylation offers the opportunity to understand the fundamental role of specific glycoforms on glycoconjugates across molecular biology.Covert art LegendsThe glycosylation of the SARS-CoV-2 spike protein receptor-binding domain has regulatory effects on the receptor binding affinity. Sialylation or not determines the “stabilizing” or “destabilizing” effect of the glycans. (Protein structure model is adapted from Protein Data Bank: 6moj. The original model does not contain the glycan structure.)SignificanceGlycans extensively cover the surface of SARS-CoV-2 spike (S) protein but the relationships between the glycan structures and the protein pathological behaviors remain elusive. Herein, we simplified and harmonized the glycan structures in the S protein receptor-binding domain and reported their regulatory roles in human receptor interaction. Opposite regulatory effects were observed and were determined by discrete glycan structures, which can be neutralized by the reported S309 antibody binding to the S protein. This report provides new insight into the mechanism of SARS-CoV-2 S protein infection as well as S309 neutralization.


Sign in / Sign up

Export Citation Format

Share Document