scholarly journals Tantalum Arsenide-Based One-Dimensional Photonic Structures

Ceramics ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 139-144 ◽  
Author(s):  
Ilka Kriegel ◽  
Michele Guizzardi ◽  
Francesco Scotognella

Weyl semimetals can be described as the three-dimensional analogue of graphene, showing linear dispersion around nodes (Weyl points). Tantalum arsenide is among the most studied Weyl semimetals. It has been demonstrated that TaAs has a very high value of the real part of the complex refractive index in the infrared region. In this work we show one-dimensional photonic crystals alternating TaAs with SiO2 or TiO2 and a microcavity where a layer of TaAs is embedded between two SiO2-TiO2 multilayers.

2019 ◽  
Vol 629 ◽  
pp. A112 ◽  
Author(s):  
B. M. Giuliano ◽  
A. A. Gavdush ◽  
B. Müller ◽  
K. I. Zaytsev ◽  
T. Grassi ◽  
...  

Context. Reliable, directly measured optical properties of astrophysical ice analogues in the infrared and terahertz (THz) range are missing from the literature. These parameters are of great importance to model the dust continuum radiative transfer in dense and cold regions, where thick ice mantles are present, and are necessary for the interpretation of future observations planned in the far-infrared region. Aims. Coherent THz radiation allows for direct measurement of the complex dielectric function (refractive index) of astrophysically relevant ice species in the THz range. Methods. We recorded the time-domain waveforms and the frequency-domain spectra of reference samples of CO ice, deposited at a temperature of 28.5 K and annealed to 33 K at different thicknesses. We developed a new algorithm to reconstruct the real and imaginary parts of the refractive index from the time-domain THz data. Results. The complex refractive index in the wavelength range 1 mm–150 μm (0.3–2.0 THz) was determined for the studied ice samples, and this index was compared with available data found in the literature. Conclusions. The developed algorithm of reconstructing the real and imaginary parts of the refractive index from the time-domain THz data enables us, for the first time, to determine the optical properties of astrophysical ice analogues without using the Kramers–Kronig relations. The obtained data provide a benchmark to interpret the observational data from current ground-based facilities as well as future space telescope missions, and we used these data to estimate the opacities of the dust grains in presence of CO ice mantles.


2018 ◽  
Vol 50 (4) ◽  
Author(s):  
S. M. Hamidi ◽  
M. Mahboubi ◽  
S. M. Mohseni ◽  
B. Azizi ◽  
A. Ghaderi ◽  
...  

Author(s):  
Azka Umar ◽  
Chun Jiang

This paper focuses on manipulating thermal emission and radiation loss of heat energy in a heat waveguide. A One-Dimensional Photonic Crystal is used as a waveguide clad to prohibit the thermal emission from escaping. The model may reduce the radiation loss of heat energy in the waveguide core, and heat energy can be confined to propagate along the waveguide’s longitude axis. The waveguide clad comprises alternative layers of high and low refractive index materials containing sufficient electromagnetic stop bands to trap the thermal emission from escaping out of the waveguide. The numerical simulation of the model shows that the forbidden bandgap of photonic crystal structures with alternative layers of silica and silicon has width enough to make heat energy be confined within the waveguide core so that efficient heat energy transmission can be achieved along the longitude axis of the waveguide.


2018 ◽  
Vol 25 (08) ◽  
pp. 1950033
Author(s):  
SAAD AMARA ◽  
MOHAMED BOUAFIA

In this work we investigate the effect of metal layer in the Al-doped ZnO (AZO)/Al/AZO structure. AZO and Al thin films are deposed successively at room temperature using DC magnetron sputtering by rotating the substrate holder without breaking the vacuum. The optical characterization of AZO/Al/AZO structure was performed by the spectroscopic ellipsometry under different incidence angles (55[Formula: see text], 65[Formula: see text] and 75[Formula: see text]). For the AZO monolayer structure, it was found that the complex refractive index and the complex permittivity coefficient varied differently according to the incidence angle. The addition of Al layer (5[Formula: see text]nm thicknesses) in this monostructure reduces significantly this influence on the measurement, homogenizes the real refractive index variation and significantly reduces the real electrical coefficient permittivity in the visible range. In addition, the obtained depolarization values confirm the results of the AFM roughness revealing that the Al layer addition makes the surface smoother so that it meets the required conditions as the bottom electrode of organic light emitting diodes. The photoluminescence (PL) measurements indicate that the Al layer alters the PL emission. Actually, the Al layer enhances subsequently the PL emission and promotes the blue and red emission.


1992 ◽  
Vol 270 ◽  
Author(s):  
Zdenék Slanina ◽  
Ludwik Adamowicz

ABSTRACTPurely carbonaceous aggregates C20 have been studied by the AM1 quantumchemical method. In addition to one dodecahedron-shaped structure possessing C1 symmetry another three-dimensional species is revealed, viz. a bowl-shaped structureof C5v symmetry (and also one two-dimensional and two one-dimensional species). Temperature dependence of the relative stabilities of both three-dimensional structures is evaluated, showing that in the relevant temperature region the fullerenic species is prevailing. However, in a very high temperature region a relative-stability interchange has been predicted.


Sign in / Sign up

Export Citation Format

Share Document