scholarly journals Intraseasonal Precipitation Variability over West Africa under 1.5 °C and 2.0 °C Global Warming Scenarios: Results from CORDEX RCMs

Climate ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 143
Author(s):  
Obed M. Ogega ◽  
Benjamin A. Gyampoh ◽  
Malcolm N. Mistry

This study assessed the performance of 24 simulations, from five regional climate models (RCMs) participating in the Coordinated Regional Climate Downscaling Experiment (CORDEX), in representing spatiotemporal characteristics of precipitation over West Africa, compared to observations. The top five performing RCM simulations were used to assess future precipitation changes over West Africa, under 1.5 °C and 2.0 °C global warming levels (GWLs), following the representative concentration pathway (RCP) 8.5. The performance evaluation and future change assessment were done using a set of seven ‘descriptors’ of West African precipitation namely the simple precipitation intensity index (SDII), the consecutive wet days (CWD), the number of wet days index (R1MM), the number of wet days with moderate and heavy intensity precipitation (R10MM and R30MM, respectively), and annual and June to September daily mean precipitation (ANN and JJAS, respectively). The performance assessment and future change outlook were done for the CORDEX–Africa subdomains of north West Africa (WA-N), south West Africa (WA-S), and a combination of the two subdomains. While the performance of RCM runs was descriptor- and subregion- specific, five model runs emerged as top performers in representing precipitation characteristics over both WA-N and WA-S. The five model runs are CCLM4 forced by ICHEC-EC-EARTH (r12i1p1), RCA4 forced by CCCma-CanESM2 (r1i1p1), RACMO22T forced by MOHC-HadGEM2-ES (r1i1p1), and the ensemble means of simulations made by CCLM4 and RACMO22T. All precipitation descriptors recorded a reduction under the two warming levels, except the SDII which recorded an increase. Unlike the WA-N that showed less frequency and more intense precipitation, the WA-S showed increased frequency and intensity. Given the potential impact that these projected changes may have on West Africa’s socioeconomic activities, adjustments in investment may be required to take advantage of (and enhance system resilience against damage that may result from) the potential changes in precipitation.

2020 ◽  
Vol 15 (6) ◽  
pp. 064007 ◽  
Author(s):  
Alessandro Dosio ◽  
Andrew G Turner ◽  
Alain T Tamoffo ◽  
Mouhamadou Bamba Sylla ◽  
Christopher Lennard ◽  
...  

2021 ◽  
pp. 1-56

This paper describes the downscaling of an ensemble of twelve GCMs using the WRF model at 12-km grid spacing over the period 1970-2099, examining the mesoscale impacts of global warming as well as the uncertainties in its mesoscale expression. The RCP 8.5 emissions scenario was used to drive both global and regional climate models. The regional climate modeling system reduced bias and improved realism for a historical period, in contrast to substantial errors for the GCM simulations driven by lack of resolution. The regional climate ensemble indicated several mesoscale responses to global warming that were not apparent in the global model simulations, such as enhanced continental interior warming during both winter and summer as well as increasing winter precipitation trends over the windward slopes of regional terrain, with declining trends to the lee of major barriers. During summer there is general drying, except to the east of the Cascades. April 1 snowpack declines are large over the lower to middle slopes of regional terrain, with small snowpack increases over the lower elevations of the interior. Snow-albedo feedbacks are very different between GCM and RCM projections, with the GCM’s producing large, unphysical areas of snowpack loss and enhanced warming. Daily average winds change little under global warming, but maximum easterly winds decline modestly, driven by a preferential sea level pressure decline over the continental interior. Although temperatures warm continuously over the domain after approximately 2010, with slight acceleration over time, occurrences of temperature extremes increase rapidly during the second half of the 21st century.


2011 ◽  
Vol 6 (1) ◽  
pp. 014008 ◽  
Author(s):  
Pascal Oettli ◽  
Benjamin Sultan ◽  
Christian Baron ◽  
Mathieu Vrac

Author(s):  
Lamboni Batablinlè ◽  
Lawin E. Agnidé ◽  
Kodja Domiho Japhet ◽  
Amoussou Ernest ◽  
Vissin Expédit

Abstract. The impact of climate change on precipitation and water availability is of major concern for policy makers in the Mono Basin of West Africa, whose economy mainly depends on rainfed agriculture and hydropower generation. The objective of this study is to project rainfall, flows and evapotranspiration (ET) in the future period and understand their changes across Mono River Basin. Observed data were considered for the historical period 1980–2010, and a Multi-model ensemble for future projections data of eight selected Regional Climate Models under RCP 4.5 and RCP 8.5 over the periods 2011–2100 was used. The GR4J model was used to simulate daily flows of the Mono watershed. The ensemble mean shows a decrease and increase streamflows between −54 % and 42 %, −58 % and 31 %​​​​​​​ under the RCP4.5, RCP8.5 scenario, respectively. The greatest decreases of high flows is projected to occur in the near term under RCP8.5, whereas the greatest decrease of low flows is projected to occur in the long term under the same RCP. For the rainfall and ET, the both scenarios (RCP4.5 and RCP8.5) predict an increase of ET while the rainfall will decrease. The results of this study of would be very useful in the choice of management and adaptation policies for water resources management.


2021 ◽  
Author(s):  
Victoria Gallardo ◽  
Emilia Sanchez-Gomez ◽  
Eleonore Riber

<p><span><span>As a result of global warming, the magnitude and the frequency of extreme hot temperature events have increased remarkably in the recent decades. </span><span>In the absence of policies, global warming is expected to continue during the next years, and certain regions which are already characterized by warm and hot temperatures, such as the Euro-Mediterranean region, may be notably impacted in numerous and diverse fields. The aeronautical sector is among these vulnerable fields, as aircraft takeoff performances also depend on air temperature. For instance, a</span><span>n increase in ground temperature results in a decrease in air density, and consequently in the available thrust for takeoff. This may lead to flight delays, weight restrictions or even flight cancellations. Concerning the aircraft engines, an increase in temperature may negatively impact the performance and may also lead to an increase of pollutant emissions into the atmosphere. All of these effects would have a social, economic and health impact.</span></span></p><p><span><span>In this study we analyze the evolution of extreme hot temperatures on aircraft performance over the main airports in the Southern Euro-Mediterranean region, using simulations performed by regional climate models (RCMs) from the Euro-CORDEX international exercise. To this end, we first evaluate RCMs in terms of their representation of extreme hot temperatures and their trends in the present period by comparing to different observational datasets and also to the driving GCMs. The results of this comparison show that RCMs don't </span><span>represent better the amplitude nor the temporal trends of hot temperature events in summer</span><span>, despide their higher spatial resolution. We assess the changes in the hot temperature extremes from the Euro-CORDEX future projections and we evaluate the risk of weight restriction in the next decades.</span></span></p>


2020 ◽  
Author(s):  
Akash Koppa ◽  
Thomas Remke ◽  
Stephan Thober ◽  
Oldrich Rakovec ◽  
Sebastian Müller ◽  
...  

<p>Headwater systems are a major source of water, sediments, and nutrients (including nitrogen and carbon di-oxide) for downstream aquatic, riparian, and inland ecosystems. As precipitation changes are expected to exhibit considerable spatial variability in the future, we hypothesize that headwater contribution to major rivers will also change significantly. Quantifying these changes is essential for developing effective adaptation and mitigation strategies against climate change. However, the lack of hydrologic projections at high resolutions over large domains have hindered attempts to quantify climate change impacts on headwater systems.</p><p>Here, we overcome this challenge by developing an ensemble of hydrologic projections at an unprecedented resolution (1km) for Germany. These high resolution projections are developed within the framework of the Helmholtz Climate Initiative (https://www.helmholtz.de/en/current-topics/the-initiative/climate-research/). Our modeling chain consists of the following four components:</p><p><strong>Climate Modeling:</strong> We statistically downscale and bias-adjust climate change scenarios from three representative concentration pathway (RCP) scenarios derived from the EURO-CORDEX ensemble - 2.6, 4.5, and 8.5 to a horizontal resolution of 1km over Germany (i.e, a total of 75 ensemble members). The EURO-CORDEX ensemble is generated by dynamically downscaling CMIP-5 general circulation models (GCM) using regional climate models (RCMs). <strong>Hydrologic Modeling:</strong> To account for model structure uncertainty, the climate model projections are used as forcings for three spatially distributed hydrologic models - a) the mesocale Hydrologic model (mHM), b) Noah-MP, and c) HTESSEL. The outputs that will be generated in the study are soil moisture, evapotranspiration, snow water equivalent, and runoff. <strong>Streamflow Routing:</strong> To minimize uncertainty from river routing schemes, we use the multiscale routing model (mRM v1.0) to route runoff from all the three models. <strong>River Temperature Modeling:</strong> A novel river temperature model is used to quantify the changes in river temperature due to anthropogenic warming.</p><p>The 225-member ensemble streamflow outputs (75 climate model members and 3 hydrologic models) are used to quantify the changes in the contribution of headwater watersheds to all the major rivers in Germany. Finally, we analyze changes in soil moisture, snow melt, and river temperature and their implications for headwater contributions. Previously, a high-resolution (5km) multi-model ensemble for climate change projections has been created within the EDgE project<strong><sup>1,2,3,4</sup></strong>. The newly created projections in this project will be compared against those created in the EDgE project.  The ensemble used in this project will profit from the higher resolution of the regional climate models that provide a more detailed land orography.</p><p><strong>References</strong></p><p><strong>[1] </strong>Marx,<em> A. et al. (2018). Climate change alters low flows in Europe under global warming of 1.5, 2, and 3 C. Hydrology and Earth System Sciences, 22(2), 1017-1032.</em></p><p><strong>[2]</strong><em> Samaniego, L. et al. (2019). Hydrological forecasts and projections for improved decision-making in the water sector in Europe. Bulletin of the American Meteorological Society.</em></p><p><strong>[3]</strong> Samaniego,<em> L. and Thober, S., et al. (2018). Anthropogenic warming exacerbates European soil moisture droughts. Nature Climate Change, 8(5), 421.</em></p><p><strong>[4]</strong> Thober,<em> S. et al. (2018). Multi-model ensemble projections of European river floods and high flows at 1.5, 2, and 3 degrees global warming. Environmental Research Letters, 13(1), 014003.</em></p><p> </p><p> </p><p> </p>


2009 ◽  
Vol 35 (6) ◽  
pp. 1073-1097 ◽  
Author(s):  
Jose A. Marengo ◽  
Tercio Ambrizzi ◽  
Rosmeri P. da Rocha ◽  
Lincoln M. Alves ◽  
Santiago V. Cuadra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document