Evolution of extreme hot temperatures over Euro-Mediterranean main airports 

Author(s):  
Victoria Gallardo ◽  
Emilia Sanchez-Gomez ◽  
Eleonore Riber

<p><span><span>As a result of global warming, the magnitude and the frequency of extreme hot temperature events have increased remarkably in the recent decades. </span><span>In the absence of policies, global warming is expected to continue during the next years, and certain regions which are already characterized by warm and hot temperatures, such as the Euro-Mediterranean region, may be notably impacted in numerous and diverse fields. The aeronautical sector is among these vulnerable fields, as aircraft takeoff performances also depend on air temperature. For instance, a</span><span>n increase in ground temperature results in a decrease in air density, and consequently in the available thrust for takeoff. This may lead to flight delays, weight restrictions or even flight cancellations. Concerning the aircraft engines, an increase in temperature may negatively impact the performance and may also lead to an increase of pollutant emissions into the atmosphere. All of these effects would have a social, economic and health impact.</span></span></p><p><span><span>In this study we analyze the evolution of extreme hot temperatures on aircraft performance over the main airports in the Southern Euro-Mediterranean region, using simulations performed by regional climate models (RCMs) from the Euro-CORDEX international exercise. To this end, we first evaluate RCMs in terms of their representation of extreme hot temperatures and their trends in the present period by comparing to different observational datasets and also to the driving GCMs. The results of this comparison show that RCMs don't </span><span>represent better the amplitude nor the temporal trends of hot temperature events in summer</span><span>, despide their higher spatial resolution. We assess the changes in the hot temperature extremes from the Euro-CORDEX future projections and we evaluate the risk of weight restriction in the next decades.</span></span></p>

Author(s):  
Weijia Qian ◽  
Howard H. Chang

Health impact assessments of future environmental exposures are routinely conducted to quantify population burdens associated with the changing climate. It is well-recognized that simulations from climate models need to be bias-corrected against observations to estimate future exposures. Quantile mapping (QM) is a technique that has gained popularity in climate science because of its focus on bias-correcting the entire exposure distribution. Even though improved bias-correction at the extreme tails of exposure may be particularly important for estimating health burdens, the application of QM in health impact projection has been limited. In this paper we describe and apply five QM methods to estimate excess emergency department (ED) visits due to projected changes in warm-season minimum temperature in Atlanta, USA. We utilized temperature projections from an ensemble of regional climate models in the North American-Coordinated Regional Climate Downscaling Experiment (NA-CORDEX). Across QM methods, we estimated consistent increase in ED visits across climate model ensemble under RCP 8.5 during the period 2050 to 2099. We found that QM methods can significantly reduce between-model variation in health impact projections (50–70% decreases in between-model standard deviation). Particularly, the quantile delta mapping approach had the largest reduction and is recommended also because of its ability to preserve model-projected absolute temporal changes in quantiles.


2021 ◽  
pp. 1-56

This paper describes the downscaling of an ensemble of twelve GCMs using the WRF model at 12-km grid spacing over the period 1970-2099, examining the mesoscale impacts of global warming as well as the uncertainties in its mesoscale expression. The RCP 8.5 emissions scenario was used to drive both global and regional climate models. The regional climate modeling system reduced bias and improved realism for a historical period, in contrast to substantial errors for the GCM simulations driven by lack of resolution. The regional climate ensemble indicated several mesoscale responses to global warming that were not apparent in the global model simulations, such as enhanced continental interior warming during both winter and summer as well as increasing winter precipitation trends over the windward slopes of regional terrain, with declining trends to the lee of major barriers. During summer there is general drying, except to the east of the Cascades. April 1 snowpack declines are large over the lower to middle slopes of regional terrain, with small snowpack increases over the lower elevations of the interior. Snow-albedo feedbacks are very different between GCM and RCM projections, with the GCM’s producing large, unphysical areas of snowpack loss and enhanced warming. Daily average winds change little under global warming, but maximum easterly winds decline modestly, driven by a preferential sea level pressure decline over the continental interior. Although temperatures warm continuously over the domain after approximately 2010, with slight acceleration over time, occurrences of temperature extremes increase rapidly during the second half of the 21st century.


Climate ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 143
Author(s):  
Obed M. Ogega ◽  
Benjamin A. Gyampoh ◽  
Malcolm N. Mistry

This study assessed the performance of 24 simulations, from five regional climate models (RCMs) participating in the Coordinated Regional Climate Downscaling Experiment (CORDEX), in representing spatiotemporal characteristics of precipitation over West Africa, compared to observations. The top five performing RCM simulations were used to assess future precipitation changes over West Africa, under 1.5 °C and 2.0 °C global warming levels (GWLs), following the representative concentration pathway (RCP) 8.5. The performance evaluation and future change assessment were done using a set of seven ‘descriptors’ of West African precipitation namely the simple precipitation intensity index (SDII), the consecutive wet days (CWD), the number of wet days index (R1MM), the number of wet days with moderate and heavy intensity precipitation (R10MM and R30MM, respectively), and annual and June to September daily mean precipitation (ANN and JJAS, respectively). The performance assessment and future change outlook were done for the CORDEX–Africa subdomains of north West Africa (WA-N), south West Africa (WA-S), and a combination of the two subdomains. While the performance of RCM runs was descriptor- and subregion- specific, five model runs emerged as top performers in representing precipitation characteristics over both WA-N and WA-S. The five model runs are CCLM4 forced by ICHEC-EC-EARTH (r12i1p1), RCA4 forced by CCCma-CanESM2 (r1i1p1), RACMO22T forced by MOHC-HadGEM2-ES (r1i1p1), and the ensemble means of simulations made by CCLM4 and RACMO22T. All precipitation descriptors recorded a reduction under the two warming levels, except the SDII which recorded an increase. Unlike the WA-N that showed less frequency and more intense precipitation, the WA-S showed increased frequency and intensity. Given the potential impact that these projected changes may have on West Africa’s socioeconomic activities, adjustments in investment may be required to take advantage of (and enhance system resilience against damage that may result from) the potential changes in precipitation.


Author(s):  
Amina Mami ◽  
Djilali Yebdri ◽  
Sabine Sauvage ◽  
Mélanie Raimonet ◽  
José Miguel

Abstract Climate change is expected to increase in the future in the Mediterranean region, including Algeria. The Tafna basin, vulnerable to drought, is one of the most important catchments ensuring water self-sufficiency in northwestern Algeria. The objective of this study is to estimate the evolution of hydrological components of the Tafna basin, throughout 2020–2099, comparing to the period 1981–2000. The SWAT model (Soil and Water Assessment Tool), calibrated and validated on the Tafna basin with good Nash at the outlet 0.82, is applied to analyze the spatial and temporal evolution of hydrological components, over the basin throughout 2020–2099. The application is produced using a precipitation and temperature minimum/maximum of an ensemble of climate model outputs obtained from a combination of eight global climate models and two regional climate models of Coordinated Regional Climate Downscaling Experiment project. The results of this study show that the decrease of precipitation in January, on average −25%, ranged between −5% and −44% in the future. This diminution affects all of the water components and fluxes of a watershed, namely, in descending order of impact: the river discharge causing a decrease −36%, the soil water available −31%, the evapotranspiration −30%, and the lateral flow −29%.


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 699
Author(s):  
Dario Conte ◽  
Silvio Gualdi ◽  
Piero Lionello

This study explores the role of model resolution on the simulation of precipitation and on the estimate of its future change in the Mediterranean region. It compares the results of two regional climate models (RCMs, with two different horizontal grid resolutions, 0.44 and 0.11 degs, covering the whole Mediterranean region) and of the global climate model (GCM, 0.75 degs) that has provided the boundary conditions for them. The regional climate models include an interactive oceanic component with a resolution of 1/16 degs. The period 1960–2100 and the representative concentration pathways RCP4.5 and RCP8.5 are considered. The results show that, in the present climate, increasing resolution increases total precipitation and its extremes over steep orography, while it has the opposite effect over flat areas and the sea. Considering climate change, in all simulations, total precipitation will decrease over most of the considered domain except at the northern boundary, where it will increase. Extreme precipitation will increase over most of the northern Mediterranean region and decrease over the sea and some southern areas. Further, the overall probability of precipitation (frequency of wet days) significantly decreases over most of the region, but wet days will be characterized with precipitation intensity higher than the present. Our analysis shows that: (1) these projected changes are robust with respect to the considered range of model resolution; (2) increasing the resolution (within the considered resolution range) decreases the magnitude of these climate change effects. However, it is likely that resolution plays a less important role than other factors, such as the different physics of regional and global climate models. It remains to be investigated whether further increasing the resolution (and reaching the scale explicitly permitting convection) would change this conclusion.


2020 ◽  
Author(s):  
Akash Koppa ◽  
Thomas Remke ◽  
Stephan Thober ◽  
Oldrich Rakovec ◽  
Sebastian Müller ◽  
...  

<p>Headwater systems are a major source of water, sediments, and nutrients (including nitrogen and carbon di-oxide) for downstream aquatic, riparian, and inland ecosystems. As precipitation changes are expected to exhibit considerable spatial variability in the future, we hypothesize that headwater contribution to major rivers will also change significantly. Quantifying these changes is essential for developing effective adaptation and mitigation strategies against climate change. However, the lack of hydrologic projections at high resolutions over large domains have hindered attempts to quantify climate change impacts on headwater systems.</p><p>Here, we overcome this challenge by developing an ensemble of hydrologic projections at an unprecedented resolution (1km) for Germany. These high resolution projections are developed within the framework of the Helmholtz Climate Initiative (https://www.helmholtz.de/en/current-topics/the-initiative/climate-research/). Our modeling chain consists of the following four components:</p><p><strong>Climate Modeling:</strong> We statistically downscale and bias-adjust climate change scenarios from three representative concentration pathway (RCP) scenarios derived from the EURO-CORDEX ensemble - 2.6, 4.5, and 8.5 to a horizontal resolution of 1km over Germany (i.e, a total of 75 ensemble members). The EURO-CORDEX ensemble is generated by dynamically downscaling CMIP-5 general circulation models (GCM) using regional climate models (RCMs). <strong>Hydrologic Modeling:</strong> To account for model structure uncertainty, the climate model projections are used as forcings for three spatially distributed hydrologic models - a) the mesocale Hydrologic model (mHM), b) Noah-MP, and c) HTESSEL. The outputs that will be generated in the study are soil moisture, evapotranspiration, snow water equivalent, and runoff. <strong>Streamflow Routing:</strong> To minimize uncertainty from river routing schemes, we use the multiscale routing model (mRM v1.0) to route runoff from all the three models. <strong>River Temperature Modeling:</strong> A novel river temperature model is used to quantify the changes in river temperature due to anthropogenic warming.</p><p>The 225-member ensemble streamflow outputs (75 climate model members and 3 hydrologic models) are used to quantify the changes in the contribution of headwater watersheds to all the major rivers in Germany. Finally, we analyze changes in soil moisture, snow melt, and river temperature and their implications for headwater contributions. Previously, a high-resolution (5km) multi-model ensemble for climate change projections has been created within the EDgE project<strong><sup>1,2,3,4</sup></strong>. The newly created projections in this project will be compared against those created in the EDgE project.  The ensemble used in this project will profit from the higher resolution of the regional climate models that provide a more detailed land orography.</p><p><strong>References</strong></p><p><strong>[1] </strong>Marx,<em> A. et al. (2018). Climate change alters low flows in Europe under global warming of 1.5, 2, and 3 C. Hydrology and Earth System Sciences, 22(2), 1017-1032.</em></p><p><strong>[2]</strong><em> Samaniego, L. et al. (2019). Hydrological forecasts and projections for improved decision-making in the water sector in Europe. Bulletin of the American Meteorological Society.</em></p><p><strong>[3]</strong> Samaniego,<em> L. and Thober, S., et al. (2018). Anthropogenic warming exacerbates European soil moisture droughts. Nature Climate Change, 8(5), 421.</em></p><p><strong>[4]</strong> Thober,<em> S. et al. (2018). Multi-model ensemble projections of European river floods and high flows at 1.5, 2, and 3 degrees global warming. Environmental Research Letters, 13(1), 014003.</em></p><p> </p><p> </p><p> </p>


2018 ◽  
Vol 13 (6) ◽  
pp. 065002 ◽  
Author(s):  
G Maúre ◽  
I Pinto ◽  
M Ndebele-Murisa ◽  
M Muthige ◽  
C Lennard ◽  
...  

2013 ◽  
Vol 17 (12) ◽  
pp. 5041-5059 ◽  
Author(s):  
R. Deidda ◽  
M. Marrocu ◽  
G. Caroletti ◽  
G. Pusceddu ◽  
A. Langousis ◽  
...  

Abstract. This paper discusses the relative performance of several climate models in providing reliable forcing for hydrological modeling in six representative catchments in the Mediterranean region. We consider 14 Regional Climate Models (RCMs), from the EU-FP6 ENSEMBLES project, run for the A1B emission scenario on a common 0.22° (about 24 km) rotated grid over Europe and the Mediterranean region. In the validation period (1951 to 2010) we consider daily precipitation and surface temperatures from the observed data fields (E-OBS) data set, available from the ENSEMBLES project and the data providers in the ECA&D project. Our primary objective is to rank the 14 RCMs for each catchment and select the four best-performing ones to use as common forcing for hydrological models in the six Mediterranean basins considered in the EU-FP7 CLIMB project. Using a common suite of four RCMs for all studied catchments reduces the (epistemic) uncertainty when evaluating trends and climate change impacts in the 21st century. We present and discuss the validation setting, as well as the obtained results and, in some detail, the difficulties we experienced when processing the data. In doing so we also provide useful information and advice for researchers not directly involved in climate modeling, but interested in the use of climate model outputs for hydrological modeling and, more generally, climate change impact studies in the Mediterranean region.


2021 ◽  
Author(s):  
Dominic Matte ◽  
Jens H. Christensen ◽  
Tugba Ozturk

AbstractUsing a sub-selection of regional climate models at 0.11° ($$\approx$$ ≈ 12 km) grid resolution from the EURO-CORDEX ensemble, we investigate how the spatial extent of areas associated with the most intensive daily precipitation events changes as a consequence of global warming. We address this by analysing three different warming levels: 1 °C, 2 °C and 3 °C. We find that not only does the intensity of such events increase, but their size will also change as a function of the warming: larger systems becomes more frequent and larger, while systems of lesser extent are reduced in numbers.


Sign in / Sign up

Export Citation Format

Share Document