scholarly journals Tunable Hierarchical Nanostructures on Micro-Conical Arrays of Laser Textured TC4 Substrate by Hydrothermal Treatment for Enhanced Anti-Icing Property

Coatings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 450
Author(s):  
Mengyao Liu ◽  
Rui Zhou ◽  
Zhekun Chen ◽  
Huangping Yan ◽  
Jingqin Cui ◽  
...  

In this work, an anti-icing structured surface was fabricated by combining laser ablation with hydrothermal treatment. A micro-patterned surface on a Ti alloy (TC4) substrate was easily fabricated by a highly effective nanosecond pulsed laser ablation. It was observed that titania (TiO2) nanostructures were formed by hydrothermal treatment in aqueous alkali on the laser ablated TC4 substrate to obtain the micro/nano-hierarchical structures. The growth mechanism of the tunable nanoarrays was discussed by the adjustment of hydrothermal temperature. The as-prepared samples exhibited excellent superhydrophobicity with contact angles greater than 160°. It was found that optimized hydrothermal treatment on laser-processed TC4 substrates could further enhance surface anti-icing property. The results showed that the delay time (DT) had been extended by achieving over 90 min for the water droplets to freeze on the as-prepared structured surfaces, providing great potential in various anti-icing applications.

Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1091 ◽  
Author(s):  
Mariusz Siciński ◽  
Ewa Korzeniewska ◽  
Mariusz Tomczyk ◽  
Ryszard Pawlak ◽  
Dariusz Bieliński ◽  
...  

This paper describes a method of laser ablation for improving the hydrophobic properties of vulcanized rubber. The treatment was tested on acrylonitrile rubber (NBR) and styrene butadiene rubber (SBR) containing carbon nanotubes and soot as fillers. The surface layer of the vulcanizates was modified using a nanosecond-pulsed laser at 1060 nm wavelength. The parameters of the ablation process were congruent, so no chemical changes in the polymeric material were observed. Evaluation of the surface condition of the laser-textured samples was performed using a Leica MZ6 stereoscopic microscope, operating with MultiScan 8.0 image analysis software. The contact angles were determined for all the samples before and after the surface modification process. Following modification of the surface morphology, with the best parameters of laser ablation, the contact angle increased, reaching 147°, which is very close to the threshold of superhydrophobicity (150°). On the basis of the results from several tests, laser ablation with a fiber-pulsed laser can be considered a very useful method for producing rubbers with superhydrophobic surfaces.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yangxi Fu ◽  
Marcos Soldera ◽  
Wei Wang ◽  
Stephan Milles ◽  
Kangfa Deng ◽  
...  

AbstractIn this study, two-step approaches to fabricate periodic microstructures on polyethylene terephthalate (PET) and poly(methyl methacrylate) (PMMA) substrates are presented to control the wettability of polymeric surfaces. Micropillar arrays with periods between 1.6 and 4.6 µm are patterned by plate-to-plate hot embossing using chromium stamps structured by four-beam Direct Laser Interference Patterning (DLIP). By varying the laser parameters, the shape, spatial period, and structure height of the laser-induced topography on Cr stamps are controlled. After that, the wettability properties, namely the static, advancing/receding contact angles (CAs), and contact angle hysteresis were characterized on the patterned PET and PMMA surfaces. The results indicate that the micropillar arrays induced a hydrophobic state in both polymers with CAs up to 140° in the case of PET, without modifying the surface chemistry. However, the structured surfaces show high adhesion to water, as the droplets stick to the surfaces and do not roll down even upon turning the substrates upside down. To investigate the wetting state on the structured polymers, theoretical CAs predicted by Wenzel and Cassie-Baxter models for selected structured samples with different topographical characteristics are also calculated and compared with the experimental data.


2021 ◽  
pp. 151995
Author(s):  
Liang Zhao ◽  
Chengwei Song ◽  
Junjie Zhang ◽  
Yandi Huang ◽  
Chunyu Zhang ◽  
...  

2019 ◽  
Author(s):  
Kurt Waldo E. Sy Piecco ◽  
Juvinch R. Vicente ◽  
Joseph R. Pyle ◽  
David C. Ingram ◽  
Martin E. Kordesch ◽  
...  

<p>Patterning semiconducting materials are important for many applications such as microelectronics, displays, and photodetectors. Lead halide perovskites are an emerging class of semiconducting materials that can be patterned via solution-based methods. Here we report an all-benchtop patterning strategy by first generating a patterned surface with contrasting wettabilities to organic solvents that have been used in the perovskite precursor solution then spin-coating the solution onto the patterned surface. The precursor solution only stays in the area with higher affinity (wettability). We applied sequential sunlight-initiated thiol-ene reactions to functionalize (and pattern) both glass and conductive fluorine-doped tin oxide (FTO) transparent glass surfaces. The functionalized surfaces were measured with the solvent contact angles of water and different organic solvents and were further characterized by XPS, selective fluorescence staining, and selective DNA adsorption. By simply spin-coating and baking the perovskite precursor solution on the patterned substrates, we obtained perovskite thin-film microarrays. The spin-coated perovskite arrays were characterized by XRD, AFM, and SEM. We concluded that Patterned substrate prepared via sequential sunlight-initiated thiol-ene click reactions is suitable to fabricate perovskite arrays via the benchtop process. In addition, the same patterned substrates can be reused several times until a favorable perovskite microarray is acquired. Among a few conditions we have tested, DMSO solvent and modified FTO surfaces with alternatively carboxylic acid and alkane is the best combination to obtain high-quality perovskite microarrays. The solvent contact angle of DMSO on carboxylic acid-modified FTO surface is nearly zero and 65±3<sup>o</sup> on octadecane modified FTO surface.</p>


Optik ◽  
2019 ◽  
Vol 178 ◽  
pp. 337-342 ◽  
Author(s):  
Y. Al-Douri ◽  
Riyadh A. Al-Samarai ◽  
S.A. Abdulateef ◽  
Ali Abu Odeh ◽  
N. Badi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document