scholarly journals The Effect of Interfacial Roughness on Residual Stresses in Electron Beam-Physical Vapor Deposition of Thermal Barrier Coatings

Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 341
Author(s):  
Bochun Zhang ◽  
Kuiying Chen ◽  
Natalie Baddour

Residual stresses play an essential role in determining the failure mechanisms and life of an electron beam-physical vapour deposition thermal barrier coating (EB-PVD TBC) system. In this paper, a new transitional roughness model was proposed and applied to describe the interfacial roughness profile during thermal cycles. Finite element models were implemented to calculate residual stresses at specific positions close to the interface of TBCs using temperature process-dependent model parameters. Combining stresses evaluated at valleys of the topcoat (TC) and excessive sharp tip roughness profiles, positions where the maximum out-of-plane residual stresses occur were identified and used to explain possible cracking routes of EB-PVD TBCs as interfacial roughness evolves during thermal cycling.

2008 ◽  
Vol 23 (9) ◽  
pp. 2382-2392 ◽  
Author(s):  
M. Tanaka ◽  
Y.F. Liu ◽  
S.S. Kim ◽  
Y. Kagawa

A pushout test method was used to quantify effect of thermal cycling temperatures on the delamination toughness of an electron beam physical vapor deposited thermal barrier coating (EB-PVD TBC). The delamination toughness, Γi, was related to the maximum thermal cycling temperature, Th, equal to 1000, 1025, 1050, and 1100 °C. The measured delamination toughness varied from 9 to 95 J/m2. At Th = 1000 °C, Γi attained a maximum value, larger than that of the as-deposited sample and decreasing with increased Th. During the thermal cycling tests, the thermally grown oxide (TGO) was formed between the TBC and the bond coat deposited onto the superalloy substrate. Inside the TGO layer, mixture of Al2O3 and ZrO2 oxides was observed close to the TBC side with nearly pure Al2O3 phases close to the bond-coat side. During the pushout test, delamination occurred at the interface of the mixture and pure Al2O3 layer with an exception for Th = 1100 °C specimens where delamination also occurred at the interface between the TGO and bond-coat layers. The effect of thermal cycling temperatures on the delamination toughness is discussed in terms of the microstructural change and delamination behavior.


2002 ◽  
Vol 124 (2) ◽  
pp. 229-234 ◽  
Author(s):  
U. Schulz ◽  
K. Fritscher ◽  
C. Leyens ◽  
M. Peters

The paper addresses the effect of processing parameters on microstructure and lifetime of electron beam physical vapor deposition, partially yttria-stabilized zirconia (EB-PVD PYSZ) coatings deposited onto NiCoCrAlY-coated Ni-base superalloys. In particular, the formation of a thermally grown oxide layer, an equi-axed zone, and various columnar arrangements of the highly textured PYSZ layers are discussed with respect to processing conditions. Three different microstructures were cyclically tested at 1100°C. The intermediate columnar structure was superior with respect to cyclic life times to a fine and to a coarse columnar structure which was mainly attributed to differences in the elastic properties. The effect of PYSZ microstructure on hot corrosion behavior of the thermal barrier coating (TBC) system at 950°C is briefly discussed.


2007 ◽  
Vol 546-549 ◽  
pp. 1777-1780 ◽  
Author(s):  
Li Dong Sun ◽  
Hong Bo Guo ◽  
He Fei Li ◽  
Sheng Kai Gong

The Hf doped NiAl coatings were co-evaporated and co-deposited onto the superalloy substrate by electron beam physical vapor deposition (EB-PVD). During heat-treatment, HfO2 was formed on the NiAl coatings. And, Hf enriched at the interface between the coating and the interdiffusion zone, which could prevent outward diffusion of elements in the substrate. The NiAl coating doped with 0.5% Hf effectively improved the high temperature oxidation resistance compared to the Hf free NiAl coating and the high Hf content coating. Also, the addition of Hf to the coating contributed to enhancing the adherence of TGO layer to coating.


2006 ◽  
Vol 522-523 ◽  
pp. 267-276 ◽  
Author(s):  
Kunihiko Wada ◽  
Yutaka Ishiwata ◽  
Norio Yamaguchi ◽  
Hideaki Matsubara

Several kinds of thermal barrier coatings (TBCs) deposited by electron beam physical vapor deposition (EB-PVD) were produced as a function of electron beam power in order to evaluate their strain tolerance. The deposition temperatures were changed from 1210 K to 1303 K depending on EB power. In order to evaluate strain tolerances of the EB-PVD/TBCs, a uniaxial compressive spallation test was newly proposed in this study. In addition, the microstructures of the layers were observed with SEM and Young’s moduli were measured by a nanoindentation test. The strain tolerance in as-deposited samples decreased with an increase in deposition temperature. In the sample deposited at 1210 and 1268 K, high-temperature aging treatment at 1273 K for 10 h remarkably promoted the reduction of the strain tolerance. The growth of thermally grown oxide (TGO) layer generated at the interface between topcoat and bondcoat layers was the principal reason for this strain tolerance reduction. We observed TGO-layer growth even in the as-deposited sample. Although the thickness of the initial TGO layer in the sample deposited at high temperature was thicker, the growth rate during aging treatment was smaller than those of the other specimens. This result suggests that we can improve the oxidation resistance of TBC systems by controlling the processing parameters in the EB-PVD process.


Author(s):  
J. Wigren ◽  
J.-F. de Vries ◽  
D. Greving

Abstract Thermal barrier coatings are used in the aerospace industry for thermal insulation in hot sections of gas turbines. Improved coating reliability is a common goal among jet engine designers. In-service failures, such as coating cracking and spallation, result in decreased engine performance and costly maintenance time. A research program was conducted to evaluate residual stresses, microstructure, and thermal shock life of thermal barrier coatings produced from different powder types and spray parameters. Sixteen coatings were ranked according to their performance relative to the other coatings in each evaluation category. Comparisons of residual stresses, powder morphology, and microstructure to thermal shock life indicate a strong correlation to thermal barrier coating performance. Results from these evaluations will aid in the selection of an optimum thermal barrier coating system for turbine engine applications.


Sign in / Sign up

Export Citation Format

Share Document